You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
299 lines
8.2 KiB
299 lines
8.2 KiB
4 months ago
|
/* The guts of the Reed-Solomon decoder, meant to be #included
|
||
|
* into a function body with the following typedefs, macros and variables supplied
|
||
|
* according to the code parameters:
|
||
|
|
||
|
* data_t - a typedef for the data symbol
|
||
|
* data_t data[] - array of NN data and parity symbols to be corrected in place
|
||
|
* retval - an integer lvalue into which the decoder's return code is written
|
||
|
* NROOTS - the number of roots in the RS code generator polynomial,
|
||
|
* which is the same as the number of parity symbols in a block.
|
||
|
Integer variable or literal.
|
||
|
* NN - the total number of symbols in a RS block. Integer variable or literal.
|
||
|
* PAD - the number of pad symbols in a block. Integer variable or literal.
|
||
|
* ALPHA_TO - The address of an array of NN elements to convert Galois field
|
||
|
* elements in index (log) form to polynomial form. Read only.
|
||
|
* INDEX_OF - The address of an array of NN elements to convert Galois field
|
||
|
* elements in polynomial form to index (log) form. Read only.
|
||
|
* MODNN - a function to reduce its argument modulo NN. May be inline or a macro.
|
||
|
* FCR - An integer literal or variable specifying the first consecutive root of the
|
||
|
* Reed-Solomon generator polynomial. Integer variable or literal.
|
||
|
* PRIM - The primitive root of the generator poly. Integer variable or literal.
|
||
|
* DEBUG - If set to 1 or more, do various internal consistency checking. Leave this
|
||
|
* undefined for production code
|
||
|
|
||
|
* The memset(), memmove(), and memcpy() functions are used. The appropriate header
|
||
|
* file declaring these functions (usually <string.h>) must be included by the calling
|
||
|
* program.
|
||
|
*/
|
||
|
|
||
|
|
||
|
#if !defined(NROOTS)
|
||
|
#error "NROOTS not defined"
|
||
|
#endif
|
||
|
|
||
|
#if !defined(NN)
|
||
|
#error "NN not defined"
|
||
|
#endif
|
||
|
|
||
|
#if !defined(PAD)
|
||
|
#error "PAD not defined"
|
||
|
#endif
|
||
|
|
||
|
#if !defined(ALPHA_TO)
|
||
|
#error "ALPHA_TO not defined"
|
||
|
#endif
|
||
|
|
||
|
#if !defined(INDEX_OF)
|
||
|
#error "INDEX_OF not defined"
|
||
|
#endif
|
||
|
|
||
|
#if !defined(MODNN)
|
||
|
#error "MODNN not defined"
|
||
|
#endif
|
||
|
|
||
|
#if !defined(FCR)
|
||
|
#error "FCR not defined"
|
||
|
#endif
|
||
|
|
||
|
#if !defined(PRIM)
|
||
|
#error "PRIM not defined"
|
||
|
#endif
|
||
|
|
||
|
#if !defined(NULL)
|
||
|
#define NULL ((void *)0)
|
||
|
#endif
|
||
|
|
||
|
#undef MIN
|
||
|
#define MIN(a,b) ((a) < (b) ? (a) : (b))
|
||
|
#undef A0
|
||
|
#define A0 (NN)
|
||
|
|
||
|
{
|
||
|
int deg_lambda, el, deg_omega;
|
||
|
int i, j, r,k;
|
||
|
data_t u,q,tmp,num1,num2,den,discr_r;
|
||
|
data_t lambda[NROOTS+1], s[NROOTS]; /* Err+Eras Locator poly
|
||
|
* and syndrome poly */
|
||
|
data_t b[NROOTS+1], t[NROOTS+1], omega[NROOTS+1];
|
||
|
data_t root[NROOTS], reg[NROOTS+1], loc[NROOTS];
|
||
|
int syn_error, count;
|
||
|
|
||
|
/* form the syndromes; i.e., evaluate data(x) at roots of g(x) */
|
||
|
for(i=0;i<NROOTS;i++)
|
||
|
s[i] = data[0];
|
||
|
|
||
|
for(j=1;j<NN-PAD;j++){
|
||
|
for(i=0;i<NROOTS;i++){
|
||
|
if(s[i] == 0){
|
||
|
s[i] = data[j];
|
||
|
} else {
|
||
|
s[i] = data[j] ^ ALPHA_TO[MODNN(INDEX_OF[s[i]] + (FCR+i)*PRIM)];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Convert syndromes to index form, checking for nonzero condition */
|
||
|
syn_error = 0;
|
||
|
for(i=0;i<NROOTS;i++){
|
||
|
syn_error |= s[i];
|
||
|
s[i] = INDEX_OF[s[i]];
|
||
|
}
|
||
|
|
||
|
if (!syn_error) {
|
||
|
/* if syndrome is zero, data[] is a codeword and there are no
|
||
|
* errors to correct. So return data[] unmodified
|
||
|
*/
|
||
|
count = 0;
|
||
|
goto finish;
|
||
|
}
|
||
|
memset(&lambda[1],0,NROOTS*sizeof(lambda[0]));
|
||
|
lambda[0] = 1;
|
||
|
|
||
|
if (no_eras > 0) {
|
||
|
/* Init lambda to be the erasure locator polynomial */
|
||
|
lambda[1] = ALPHA_TO[MODNN(PRIM*(NN-1-eras_pos[0]))];
|
||
|
for (i = 1; i < no_eras; i++) {
|
||
|
u = MODNN(PRIM*(NN-1-eras_pos[i]));
|
||
|
for (j = i+1; j > 0; j--) {
|
||
|
tmp = INDEX_OF[lambda[j - 1]];
|
||
|
if(tmp != A0)
|
||
|
lambda[j] ^= ALPHA_TO[MODNN(u + tmp)];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#if DEBUG >= 1
|
||
|
/* Test code that verifies the erasure locator polynomial just constructed
|
||
|
Needed only for decoder debugging. */
|
||
|
|
||
|
/* find roots of the erasure location polynomial */
|
||
|
for(i=1;i<=no_eras;i++)
|
||
|
reg[i] = INDEX_OF[lambda[i]];
|
||
|
|
||
|
count = 0;
|
||
|
for (i = 1,k=IPRIM-1; i <= NN; i++,k = MODNN(k+IPRIM)) {
|
||
|
q = 1;
|
||
|
for (j = 1; j <= no_eras; j++)
|
||
|
if (reg[j] != A0) {
|
||
|
reg[j] = MODNN(reg[j] + j);
|
||
|
q ^= ALPHA_TO[reg[j]];
|
||
|
}
|
||
|
if (q != 0)
|
||
|
continue;
|
||
|
/* store root and error location number indices */
|
||
|
root[count] = i;
|
||
|
loc[count] = k;
|
||
|
count++;
|
||
|
}
|
||
|
if (count != no_eras) {
|
||
|
printf("count = %d no_eras = %d\n lambda(x) is WRONG\n",count,no_eras);
|
||
|
count = -1;
|
||
|
goto finish;
|
||
|
}
|
||
|
#if DEBUG >= 2
|
||
|
printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n");
|
||
|
for (i = 0; i < count; i++)
|
||
|
printf("%d ", loc[i]);
|
||
|
printf("\n");
|
||
|
#endif
|
||
|
#endif
|
||
|
}
|
||
|
for(i=0;i<NROOTS+1;i++)
|
||
|
b[i] = INDEX_OF[lambda[i]];
|
||
|
|
||
|
/*
|
||
|
* Begin Berlekamp-Massey algorithm to determine error+erasure
|
||
|
* locator polynomial
|
||
|
*/
|
||
|
r = no_eras;
|
||
|
el = no_eras;
|
||
|
while (++r <= NROOTS) { /* r is the step number */
|
||
|
/* Compute discrepancy at the r-th step in poly-form */
|
||
|
discr_r = 0;
|
||
|
for (i = 0; i < r; i++){
|
||
|
if ((lambda[i] != 0) && (s[r-i-1] != A0)) {
|
||
|
discr_r ^= ALPHA_TO[MODNN(INDEX_OF[lambda[i]] + s[r-i-1])];
|
||
|
}
|
||
|
}
|
||
|
discr_r = INDEX_OF[discr_r]; /* Index form */
|
||
|
if (discr_r == A0) {
|
||
|
/* 2 lines below: B(x) <-- x*B(x) */
|
||
|
memmove(&b[1],b,NROOTS*sizeof(b[0]));
|
||
|
b[0] = A0;
|
||
|
} else {
|
||
|
/* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */
|
||
|
t[0] = lambda[0];
|
||
|
for (i = 0 ; i < NROOTS; i++) {
|
||
|
if(b[i] != A0)
|
||
|
t[i+1] = lambda[i+1] ^ ALPHA_TO[MODNN(discr_r + b[i])];
|
||
|
else
|
||
|
t[i+1] = lambda[i+1];
|
||
|
}
|
||
|
if (2 * el <= r + no_eras - 1) {
|
||
|
el = r + no_eras - el;
|
||
|
/*
|
||
|
* 2 lines below: B(x) <-- inv(discr_r) *
|
||
|
* lambda(x)
|
||
|
*/
|
||
|
for (i = 0; i <= NROOTS; i++)
|
||
|
b[i] = (lambda[i] == 0) ? A0 : MODNN(INDEX_OF[lambda[i]] - discr_r + NN);
|
||
|
} else {
|
||
|
/* 2 lines below: B(x) <-- x*B(x) */
|
||
|
memmove(&b[1],b,NROOTS*sizeof(b[0]));
|
||
|
b[0] = A0;
|
||
|
}
|
||
|
memcpy(lambda,t,(NROOTS+1)*sizeof(t[0]));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Convert lambda to index form and compute deg(lambda(x)) */
|
||
|
deg_lambda = 0;
|
||
|
for(i=0;i<NROOTS+1;i++){
|
||
|
lambda[i] = INDEX_OF[lambda[i]];
|
||
|
if(lambda[i] != A0)
|
||
|
deg_lambda = i;
|
||
|
}
|
||
|
/* Find roots of the error+erasure locator polynomial by Chien search */
|
||
|
memcpy(®[1],&lambda[1],NROOTS*sizeof(reg[0]));
|
||
|
count = 0; /* Number of roots of lambda(x) */
|
||
|
for (i = 1,k=IPRIM-1; i <= NN; i++,k = MODNN(k+IPRIM)) {
|
||
|
q = 1; /* lambda[0] is always 0 */
|
||
|
for (j = deg_lambda; j > 0; j--){
|
||
|
if (reg[j] != A0) {
|
||
|
reg[j] = MODNN(reg[j] + j);
|
||
|
q ^= ALPHA_TO[reg[j]];
|
||
|
}
|
||
|
}
|
||
|
if (q != 0)
|
||
|
continue; /* Not a root */
|
||
|
/* store root (index-form) and error location number */
|
||
|
#if DEBUG>=2
|
||
|
printf("count %d root %d loc %d\n",count,i,k);
|
||
|
#endif
|
||
|
root[count] = i;
|
||
|
loc[count] = k;
|
||
|
/* If we've already found max possible roots,
|
||
|
* abort the search to save time
|
||
|
*/
|
||
|
if(++count == deg_lambda)
|
||
|
break;
|
||
|
}
|
||
|
if (deg_lambda != count) {
|
||
|
/*
|
||
|
* deg(lambda) unequal to number of roots => uncorrectable
|
||
|
* error detected
|
||
|
*/
|
||
|
count = -1;
|
||
|
goto finish;
|
||
|
}
|
||
|
/*
|
||
|
* Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
|
||
|
* x**NROOTS). in index form. Also find deg(omega).
|
||
|
*/
|
||
|
deg_omega = deg_lambda-1;
|
||
|
for (i = 0; i <= deg_omega;i++){
|
||
|
tmp = 0;
|
||
|
for(j=i;j >= 0; j--){
|
||
|
if ((s[i - j] != A0) && (lambda[j] != A0))
|
||
|
tmp ^= ALPHA_TO[MODNN(s[i - j] + lambda[j])];
|
||
|
}
|
||
|
omega[i] = INDEX_OF[tmp];
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
|
||
|
* inv(X(l))**(FCR-1) and den = lambda_pr(inv(X(l))) all in poly-form
|
||
|
*/
|
||
|
for (j = count-1; j >=0; j--) {
|
||
|
num1 = 0;
|
||
|
for (i = deg_omega; i >= 0; i--) {
|
||
|
if (omega[i] != A0)
|
||
|
num1 ^= ALPHA_TO[MODNN(omega[i] + i * root[j])];
|
||
|
}
|
||
|
num2 = ALPHA_TO[MODNN(root[j] * (FCR - 1) + NN)];
|
||
|
den = 0;
|
||
|
|
||
|
/* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */
|
||
|
for (i = MIN(deg_lambda,NROOTS-1) & ~1; i >= 0; i -=2) {
|
||
|
if(lambda[i+1] != A0)
|
||
|
den ^= ALPHA_TO[MODNN(lambda[i+1] + i * root[j])];
|
||
|
}
|
||
|
#if DEBUG >= 1
|
||
|
if (den == 0) {
|
||
|
printf("\n ERROR: denominator = 0\n");
|
||
|
count = -1;
|
||
|
goto finish;
|
||
|
}
|
||
|
#endif
|
||
|
/* Apply error to data */
|
||
|
if (num1 != 0 && loc[j] >= PAD) {
|
||
|
data[loc[j]-PAD] ^= ALPHA_TO[MODNN(INDEX_OF[num1] + INDEX_OF[num2] + NN - INDEX_OF[den])];
|
||
|
}
|
||
|
}
|
||
|
finish:
|
||
|
if(eras_pos != NULL){
|
||
|
for(i=0;i<count;i++)
|
||
|
eras_pos[i] = loc[i];
|
||
|
}
|
||
|
retval = count;
|
||
|
}
|