You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
222 lines
8.8 KiB
222 lines
8.8 KiB
4 months ago
|
from __future__ import division
|
||
|
# When true division is the default, get rid of this and add it to
|
||
|
# test_long.py instead. In the meantime, it's too obscure to try to
|
||
|
# trick just part of test_long into using future division.
|
||
|
|
||
|
import sys
|
||
|
import random
|
||
|
import math
|
||
|
import unittest
|
||
|
from test.test_support import run_unittest
|
||
|
|
||
|
# decorator for skipping tests on non-IEEE 754 platforms
|
||
|
requires_IEEE_754 = unittest.skipUnless(
|
||
|
float.__getformat__("double").startswith("IEEE"),
|
||
|
"test requires IEEE 754 doubles")
|
||
|
|
||
|
DBL_MAX = sys.float_info.max
|
||
|
DBL_MAX_EXP = sys.float_info.max_exp
|
||
|
DBL_MIN_EXP = sys.float_info.min_exp
|
||
|
DBL_MANT_DIG = sys.float_info.mant_dig
|
||
|
DBL_MIN_OVERFLOW = 2**DBL_MAX_EXP - 2**(DBL_MAX_EXP - DBL_MANT_DIG - 1)
|
||
|
|
||
|
# pure Python version of correctly-rounded true division
|
||
|
def truediv(a, b):
|
||
|
"""Correctly-rounded true division for integers."""
|
||
|
negative = a^b < 0
|
||
|
a, b = abs(a), abs(b)
|
||
|
|
||
|
# exceptions: division by zero, overflow
|
||
|
if not b:
|
||
|
raise ZeroDivisionError("division by zero")
|
||
|
if a >= DBL_MIN_OVERFLOW * b:
|
||
|
raise OverflowError("int/int too large to represent as a float")
|
||
|
|
||
|
# find integer d satisfying 2**(d - 1) <= a/b < 2**d
|
||
|
d = a.bit_length() - b.bit_length()
|
||
|
if d >= 0 and a >= 2**d * b or d < 0 and a * 2**-d >= b:
|
||
|
d += 1
|
||
|
|
||
|
# compute 2**-exp * a / b for suitable exp
|
||
|
exp = max(d, DBL_MIN_EXP) - DBL_MANT_DIG
|
||
|
a, b = a << max(-exp, 0), b << max(exp, 0)
|
||
|
q, r = divmod(a, b)
|
||
|
|
||
|
# round-half-to-even: fractional part is r/b, which is > 0.5 iff
|
||
|
# 2*r > b, and == 0.5 iff 2*r == b.
|
||
|
if 2*r > b or 2*r == b and q % 2 == 1:
|
||
|
q += 1
|
||
|
|
||
|
result = math.ldexp(float(q), exp)
|
||
|
return -result if negative else result
|
||
|
|
||
|
class TrueDivisionTests(unittest.TestCase):
|
||
|
def test(self):
|
||
|
huge = 1L << 40000
|
||
|
mhuge = -huge
|
||
|
self.assertEqual(huge / huge, 1.0)
|
||
|
self.assertEqual(mhuge / mhuge, 1.0)
|
||
|
self.assertEqual(huge / mhuge, -1.0)
|
||
|
self.assertEqual(mhuge / huge, -1.0)
|
||
|
self.assertEqual(1 / huge, 0.0)
|
||
|
self.assertEqual(1L / huge, 0.0)
|
||
|
self.assertEqual(1 / mhuge, 0.0)
|
||
|
self.assertEqual(1L / mhuge, 0.0)
|
||
|
self.assertEqual((666 * huge + (huge >> 1)) / huge, 666.5)
|
||
|
self.assertEqual((666 * mhuge + (mhuge >> 1)) / mhuge, 666.5)
|
||
|
self.assertEqual((666 * huge + (huge >> 1)) / mhuge, -666.5)
|
||
|
self.assertEqual((666 * mhuge + (mhuge >> 1)) / huge, -666.5)
|
||
|
self.assertEqual(huge / (huge << 1), 0.5)
|
||
|
self.assertEqual((1000000 * huge) / huge, 1000000)
|
||
|
|
||
|
namespace = {'huge': huge, 'mhuge': mhuge}
|
||
|
|
||
|
for overflow in ["float(huge)", "float(mhuge)",
|
||
|
"huge / 1", "huge / 2L", "huge / -1", "huge / -2L",
|
||
|
"mhuge / 100", "mhuge / 100L"]:
|
||
|
# If the "eval" does not happen in this module,
|
||
|
# true division is not enabled
|
||
|
with self.assertRaises(OverflowError):
|
||
|
eval(overflow, namespace)
|
||
|
|
||
|
for underflow in ["1 / huge", "2L / huge", "-1 / huge", "-2L / huge",
|
||
|
"100 / mhuge", "100L / mhuge"]:
|
||
|
result = eval(underflow, namespace)
|
||
|
self.assertEqual(result, 0.0, 'expected underflow to 0 '
|
||
|
'from {!r}'.format(underflow))
|
||
|
|
||
|
for zero in ["huge / 0", "huge / 0L", "mhuge / 0", "mhuge / 0L"]:
|
||
|
with self.assertRaises(ZeroDivisionError):
|
||
|
eval(zero, namespace)
|
||
|
|
||
|
def check_truediv(self, a, b, skip_small=True):
|
||
|
"""Verify that the result of a/b is correctly rounded, by
|
||
|
comparing it with a pure Python implementation of correctly
|
||
|
rounded division. b should be nonzero."""
|
||
|
|
||
|
a, b = long(a), long(b)
|
||
|
|
||
|
# skip check for small a and b: in this case, the current
|
||
|
# implementation converts the arguments to float directly and
|
||
|
# then applies a float division. This can give doubly-rounded
|
||
|
# results on x87-using machines (particularly 32-bit Linux).
|
||
|
if skip_small and max(abs(a), abs(b)) < 2**DBL_MANT_DIG:
|
||
|
return
|
||
|
|
||
|
try:
|
||
|
# use repr so that we can distinguish between -0.0 and 0.0
|
||
|
expected = repr(truediv(a, b))
|
||
|
except OverflowError:
|
||
|
expected = 'overflow'
|
||
|
except ZeroDivisionError:
|
||
|
expected = 'zerodivision'
|
||
|
|
||
|
try:
|
||
|
got = repr(a / b)
|
||
|
except OverflowError:
|
||
|
got = 'overflow'
|
||
|
except ZeroDivisionError:
|
||
|
got = 'zerodivision'
|
||
|
|
||
|
self.assertEqual(expected, got, "Incorrectly rounded division {}/{}: "
|
||
|
"expected {}, got {}".format(a, b, expected, got))
|
||
|
|
||
|
@requires_IEEE_754
|
||
|
def test_correctly_rounded_true_division(self):
|
||
|
# more stringent tests than those above, checking that the
|
||
|
# result of true division of ints is always correctly rounded.
|
||
|
# This test should probably be considered CPython-specific.
|
||
|
|
||
|
# Exercise all the code paths not involving Gb-sized ints.
|
||
|
# ... divisions involving zero
|
||
|
self.check_truediv(123, 0)
|
||
|
self.check_truediv(-456, 0)
|
||
|
self.check_truediv(0, 3)
|
||
|
self.check_truediv(0, -3)
|
||
|
self.check_truediv(0, 0)
|
||
|
# ... overflow or underflow by large margin
|
||
|
self.check_truediv(671 * 12345 * 2**DBL_MAX_EXP, 12345)
|
||
|
self.check_truediv(12345, 345678 * 2**(DBL_MANT_DIG - DBL_MIN_EXP))
|
||
|
# ... a much larger or smaller than b
|
||
|
self.check_truediv(12345*2**100, 98765)
|
||
|
self.check_truediv(12345*2**30, 98765*7**81)
|
||
|
# ... a / b near a boundary: one of 1, 2**DBL_MANT_DIG, 2**DBL_MIN_EXP,
|
||
|
# 2**DBL_MAX_EXP, 2**(DBL_MIN_EXP-DBL_MANT_DIG)
|
||
|
bases = (0, DBL_MANT_DIG, DBL_MIN_EXP,
|
||
|
DBL_MAX_EXP, DBL_MIN_EXP - DBL_MANT_DIG)
|
||
|
for base in bases:
|
||
|
for exp in range(base - 15, base + 15):
|
||
|
self.check_truediv(75312*2**max(exp, 0), 69187*2**max(-exp, 0))
|
||
|
self.check_truediv(69187*2**max(exp, 0), 75312*2**max(-exp, 0))
|
||
|
|
||
|
# overflow corner case
|
||
|
for m in [1, 2, 7, 17, 12345, 7**100,
|
||
|
-1, -2, -5, -23, -67891, -41**50]:
|
||
|
for n in range(-10, 10):
|
||
|
self.check_truediv(m*DBL_MIN_OVERFLOW + n, m)
|
||
|
self.check_truediv(m*DBL_MIN_OVERFLOW + n, -m)
|
||
|
|
||
|
# check detection of inexactness in shifting stage
|
||
|
for n in range(250):
|
||
|
# (2**DBL_MANT_DIG+1)/(2**DBL_MANT_DIG) lies halfway
|
||
|
# between two representable floats, and would usually be
|
||
|
# rounded down under round-half-to-even. The tiniest of
|
||
|
# additions to the numerator should cause it to be rounded
|
||
|
# up instead.
|
||
|
self.check_truediv((2**DBL_MANT_DIG + 1)*12345*2**200 + 2**n,
|
||
|
2**DBL_MANT_DIG*12345)
|
||
|
|
||
|
# 1/2731 is one of the smallest division cases that's subject
|
||
|
# to double rounding on IEEE 754 machines working internally with
|
||
|
# 64-bit precision. On such machines, the next check would fail,
|
||
|
# were it not explicitly skipped in check_truediv.
|
||
|
self.check_truediv(1, 2731)
|
||
|
|
||
|
# a particularly bad case for the old algorithm: gives an
|
||
|
# error of close to 3.5 ulps.
|
||
|
self.check_truediv(295147931372582273023, 295147932265116303360)
|
||
|
for i in range(1000):
|
||
|
self.check_truediv(10**(i+1), 10**i)
|
||
|
self.check_truediv(10**i, 10**(i+1))
|
||
|
|
||
|
# test round-half-to-even behaviour, normal result
|
||
|
for m in [1, 2, 4, 7, 8, 16, 17, 32, 12345, 7**100,
|
||
|
-1, -2, -5, -23, -67891, -41**50]:
|
||
|
for n in range(-10, 10):
|
||
|
self.check_truediv(2**DBL_MANT_DIG*m + n, m)
|
||
|
|
||
|
# test round-half-to-even, subnormal result
|
||
|
for n in range(-20, 20):
|
||
|
self.check_truediv(n, 2**1076)
|
||
|
|
||
|
# largeish random divisions: a/b where |a| <= |b| <=
|
||
|
# 2*|a|; |ans| is between 0.5 and 1.0, so error should
|
||
|
# always be bounded by 2**-54 with equality possible only
|
||
|
# if the least significant bit of q=ans*2**53 is zero.
|
||
|
for M in [10**10, 10**100, 10**1000]:
|
||
|
for i in range(1000):
|
||
|
a = random.randrange(1, M)
|
||
|
b = random.randrange(a, 2*a+1)
|
||
|
self.check_truediv(a, b)
|
||
|
self.check_truediv(-a, b)
|
||
|
self.check_truediv(a, -b)
|
||
|
self.check_truediv(-a, -b)
|
||
|
|
||
|
# and some (genuinely) random tests
|
||
|
for _ in range(10000):
|
||
|
a_bits = random.randrange(1000)
|
||
|
b_bits = random.randrange(1, 1000)
|
||
|
x = random.randrange(2**a_bits)
|
||
|
y = random.randrange(1, 2**b_bits)
|
||
|
self.check_truediv(x, y)
|
||
|
self.check_truediv(x, -y)
|
||
|
self.check_truediv(-x, y)
|
||
|
self.check_truediv(-x, -y)
|
||
|
|
||
|
|
||
|
def test_main():
|
||
|
run_unittest(TrueDivisionTests)
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
test_main()
|