You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
147 lines
6.5 KiB
147 lines
6.5 KiB
4 months ago
|
/*
|
||
|
* Copyright (C) 2018 The Android Open Source Project
|
||
|
*
|
||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
* you may not use this file except in compliance with the License.
|
||
|
* You may obtain a copy of the License at
|
||
|
*
|
||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
* See the License for the specific language governing permissions and
|
||
|
* limitations under the License.
|
||
|
*/
|
||
|
|
||
|
#define LOG_TAG "Operations"
|
||
|
|
||
|
#include "OperationResolver.h"
|
||
|
#include "OperationsUtils.h"
|
||
|
#include "Tracing.h"
|
||
|
|
||
|
namespace android {
|
||
|
namespace nn {
|
||
|
namespace gather {
|
||
|
|
||
|
constexpr char kOperationName[] = "GATHER";
|
||
|
|
||
|
constexpr uint32_t kNumInputs = 3;
|
||
|
constexpr uint32_t kInputTensor = 0;
|
||
|
constexpr uint32_t kInputAxis = 1;
|
||
|
constexpr uint32_t kInputIndices = 2;
|
||
|
|
||
|
constexpr uint32_t kNumOutputs = 1;
|
||
|
constexpr uint32_t kOutputTensor = 0;
|
||
|
|
||
|
namespace {
|
||
|
|
||
|
template <typename T>
|
||
|
inline bool eval(const T* inputData, const Shape& inputShape, int32_t axis,
|
||
|
const int32_t* indicesData, const Shape& indicesShape, T* outputData) {
|
||
|
const auto outerSize = getNumberOfElements(inputShape, 0, axis);
|
||
|
const auto axisSize = getSizeOfDimension(inputShape, axis);
|
||
|
const auto innerSize =
|
||
|
getNumberOfElements(inputShape, axis + 1, getNumberOfDimensions(inputShape));
|
||
|
const auto indicesCount = getNumberOfElements(indicesShape);
|
||
|
for (uint32_t outer = 0; outer < outerSize; ++outer) {
|
||
|
for (uint32_t outputIndex = 0; outputIndex < indicesCount; ++outputIndex) {
|
||
|
const auto inputIndex = static_cast<uint32_t>(indicesData[outputIndex]);
|
||
|
NN_RET_CHECK_LE(0u, inputIndex);
|
||
|
NN_RET_CHECK_LT(inputIndex, axisSize);
|
||
|
std::memcpy(outputData + (outer * indicesCount + outputIndex) * innerSize,
|
||
|
inputData + (outer * axisSize + inputIndex) * innerSize,
|
||
|
sizeof(T) * innerSize);
|
||
|
}
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
} // namespace
|
||
|
|
||
|
Result<Version> validate(const IOperationValidationContext* context) {
|
||
|
NN_RET_CHECK_EQ(context->getNumInputs(), kNumInputs);
|
||
|
NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs);
|
||
|
OperandType inputType = context->getInputType(kInputTensor);
|
||
|
NN_RET_CHECK(inputType == OperandType::TENSOR_FLOAT16 ||
|
||
|
inputType == OperandType::TENSOR_FLOAT32 ||
|
||
|
inputType == OperandType::TENSOR_INT32 ||
|
||
|
inputType == OperandType::TENSOR_QUANT8_ASYMM ||
|
||
|
inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED)
|
||
|
<< "Unsupported tensor type for operation " << kOperationName;
|
||
|
NN_RET_CHECK(validateInputTypes(context,
|
||
|
{inputType, OperandType::INT32, OperandType::TENSOR_INT32}));
|
||
|
NN_RET_CHECK(validateOutputTypes(context, {inputType}));
|
||
|
if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
|
||
|
return Version::ANDROID_R;
|
||
|
} else {
|
||
|
return Version::ANDROID_Q;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bool prepare(IOperationExecutionContext* context) {
|
||
|
Shape input = context->getInputShape(kInputTensor);
|
||
|
int32_t axis = context->getInputValue<int32_t>(kInputAxis);
|
||
|
NN_RET_CHECK(handleNegativeAxis(input, &axis));
|
||
|
Shape indices = context->getInputShape(kInputIndices);
|
||
|
Shape output = context->getOutputShape(kOutputTensor);
|
||
|
|
||
|
output.dimensions.clear();
|
||
|
output.dimensions.reserve(getNumberOfDimensions(input) + getNumberOfDimensions(indices) - 1);
|
||
|
output.dimensions.insert(output.dimensions.end(), input.dimensions.begin(),
|
||
|
input.dimensions.begin() + axis);
|
||
|
output.dimensions.insert(output.dimensions.end(), indices.dimensions.begin(),
|
||
|
indices.dimensions.end());
|
||
|
output.dimensions.insert(output.dimensions.end(), input.dimensions.begin() + axis + 1,
|
||
|
input.dimensions.end());
|
||
|
|
||
|
return context->setOutputShape(kOutputTensor, output);
|
||
|
}
|
||
|
|
||
|
bool execute(IOperationExecutionContext* context) {
|
||
|
int32_t axis = context->getInputValue<int32_t>(kInputAxis);
|
||
|
NN_RET_CHECK(handleNegativeAxis(context->getInputShape(kInputTensor), &axis));
|
||
|
switch (context->getInputType(kInputTensor)) {
|
||
|
case OperandType::TENSOR_FLOAT16:
|
||
|
return eval(context->getInputBuffer<_Float16>(kInputTensor),
|
||
|
context->getInputShape(kInputTensor), axis,
|
||
|
context->getInputBuffer<int32_t>(kInputIndices),
|
||
|
context->getInputShape(kInputIndices),
|
||
|
context->getOutputBuffer<_Float16>(kOutputTensor));
|
||
|
case OperandType::TENSOR_FLOAT32:
|
||
|
return eval(context->getInputBuffer<float>(kInputTensor),
|
||
|
context->getInputShape(kInputTensor), axis,
|
||
|
context->getInputBuffer<int32_t>(kInputIndices),
|
||
|
context->getInputShape(kInputIndices),
|
||
|
context->getOutputBuffer<float>(kOutputTensor));
|
||
|
case OperandType::TENSOR_INT32:
|
||
|
return eval(context->getInputBuffer<int32_t>(kInputTensor),
|
||
|
context->getInputShape(kInputTensor), axis,
|
||
|
context->getInputBuffer<int32_t>(kInputIndices),
|
||
|
context->getInputShape(kInputIndices),
|
||
|
context->getOutputBuffer<int32_t>(kOutputTensor));
|
||
|
case OperandType::TENSOR_QUANT8_ASYMM:
|
||
|
return eval(context->getInputBuffer<uint8_t>(kInputTensor),
|
||
|
context->getInputShape(kInputTensor), axis,
|
||
|
context->getInputBuffer<int32_t>(kInputIndices),
|
||
|
context->getInputShape(kInputIndices),
|
||
|
context->getOutputBuffer<uint8_t>(kOutputTensor));
|
||
|
case OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
|
||
|
return eval(context->getInputBuffer<int8_t>(kInputTensor),
|
||
|
context->getInputShape(kInputTensor), axis,
|
||
|
context->getInputBuffer<int32_t>(kInputIndices),
|
||
|
context->getInputShape(kInputIndices),
|
||
|
context->getOutputBuffer<int8_t>(kOutputTensor));
|
||
|
default:
|
||
|
NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
} // namespace gather
|
||
|
|
||
|
NN_REGISTER_OPERATION(GATHER, gather::kOperationName, gather::validate, gather::prepare,
|
||
|
gather::execute);
|
||
|
|
||
|
} // namespace nn
|
||
|
} // namespace android
|