You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
132 lines
5.5 KiB
132 lines
5.5 KiB
4 months ago
|
/*
|
||
|
* Copyright (C) 2019 The Android Open Source Project
|
||
|
*
|
||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
* you may not use this file except in compliance with the License.
|
||
|
* You may obtain a copy of the License at
|
||
|
*
|
||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
* See the License for the specific language governing permissions and
|
||
|
* limitations under the License.
|
||
|
*/
|
||
|
|
||
|
#define LOG_TAG "Operations"
|
||
|
|
||
|
#include <algorithm>
|
||
|
#include <cmath>
|
||
|
|
||
|
#include "IndexedShapeWrapper.h"
|
||
|
#include "OperationResolver.h"
|
||
|
#include "OperationsUtils.h"
|
||
|
#include "Tracing.h"
|
||
|
|
||
|
namespace android {
|
||
|
namespace nn {
|
||
|
namespace quantize {
|
||
|
|
||
|
constexpr uint32_t kNumInputs = 1;
|
||
|
constexpr uint32_t kInputTensor = 0;
|
||
|
|
||
|
constexpr uint32_t kNumOutputs = 1;
|
||
|
constexpr uint32_t kOutputTensor = 0;
|
||
|
|
||
|
namespace {
|
||
|
|
||
|
template <typename T>
|
||
|
bool quantizeToQuant8(const T* inputData, uint8_t* outputData, const Shape& outputShape) {
|
||
|
NNTRACE_COMP("quantizeToQuant8");
|
||
|
uint32_t size = getNumberOfElements(outputShape);
|
||
|
for (uint32_t i = 0; i < size; ++i) {
|
||
|
outputData[i] = static_cast<uint8_t>(std::max<float>(
|
||
|
0.0f, std::min<float>(255.0f, outputShape.offset + std::round(inputData[i] /
|
||
|
outputShape.scale))));
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
bool quantizeToQuant8Signed(const T* inputData, int8_t* outputData, const Shape& outputShape) {
|
||
|
NNTRACE_COMP("quantizeToQuant8Signed");
|
||
|
uint32_t size = getNumberOfElements(outputShape);
|
||
|
for (uint32_t i = 0; i < size; ++i) {
|
||
|
outputData[i] = static_cast<int8_t>(std::max<float>(
|
||
|
-128.0f,
|
||
|
std::min<float>(127.0f, outputShape.offset +
|
||
|
std::round(inputData[i] / outputShape.scale))));
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
} // namespace
|
||
|
|
||
|
Result<Version> validate(const IOperationValidationContext* context) {
|
||
|
NN_RET_CHECK_EQ(context->getNumInputs(), kNumInputs);
|
||
|
NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs);
|
||
|
|
||
|
const OperandType inputType = context->getInputType(kInputTensor);
|
||
|
const OperandType outputType = context->getOutputType(kOutputTensor);
|
||
|
|
||
|
NN_RET_CHECK(inputType == OperandType::TENSOR_FLOAT16 ||
|
||
|
inputType == OperandType::TENSOR_FLOAT32)
|
||
|
<< "Unsupported input operand type for QUANTIZE op: " << inputType;
|
||
|
NN_RET_CHECK(outputType == OperandType::TENSOR_QUANT8_ASYMM ||
|
||
|
outputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED)
|
||
|
<< "Unsupported output operand type for QUANTIZE op: " << outputType;
|
||
|
if (outputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
|
||
|
return Version::ANDROID_R;
|
||
|
} else {
|
||
|
return Version::ANDROID_Q;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bool prepare(IOperationExecutionContext* context) {
|
||
|
const Shape& input = context->getInputShape(kInputTensor);
|
||
|
Shape output = context->getOutputShape(kOutputTensor);
|
||
|
output.dimensions = input.dimensions;
|
||
|
return context->setOutputShape(kOutputTensor, output);
|
||
|
}
|
||
|
|
||
|
bool execute(IOperationExecutionContext* context) {
|
||
|
// Bypass execution in the case of zero-sized input.
|
||
|
if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true;
|
||
|
|
||
|
const OperandType inputType = context->getInputType(kInputTensor);
|
||
|
const OperandType outputType = context->getOutputType(kOutputTensor);
|
||
|
if (inputType == OperandType::TENSOR_FLOAT32) {
|
||
|
if (outputType == OperandType::TENSOR_QUANT8_ASYMM) {
|
||
|
return quantizeToQuant8<float>(context->getInputBuffer<float>(kInputTensor),
|
||
|
context->getOutputBuffer<uint8_t>(kOutputTensor),
|
||
|
context->getOutputShape(kOutputTensor));
|
||
|
} else if (outputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
|
||
|
return quantizeToQuant8Signed<float>(context->getInputBuffer<float>(kInputTensor),
|
||
|
context->getOutputBuffer<int8_t>(kOutputTensor),
|
||
|
context->getOutputShape(kOutputTensor));
|
||
|
}
|
||
|
} else if (inputType == OperandType::TENSOR_FLOAT16) {
|
||
|
if (outputType == OperandType::TENSOR_QUANT8_ASYMM) {
|
||
|
return quantizeToQuant8<_Float16>(context->getInputBuffer<_Float16>(kInputTensor),
|
||
|
context->getOutputBuffer<uint8_t>(kOutputTensor),
|
||
|
context->getOutputShape(kOutputTensor));
|
||
|
} else if (outputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
|
||
|
return quantizeToQuant8Signed<_Float16>(context->getInputBuffer<_Float16>(kInputTensor),
|
||
|
context->getOutputBuffer<int8_t>(kOutputTensor),
|
||
|
context->getOutputShape(kOutputTensor));
|
||
|
}
|
||
|
}
|
||
|
NN_RET_CHECK_FAIL() << "Unsupported tensor types combination for QUANTIZE op. (input type: "
|
||
|
<< inputType << " output type: " << context->getOutputType(kOutputTensor)
|
||
|
<< ")";
|
||
|
}
|
||
|
|
||
|
} // namespace quantize
|
||
|
|
||
|
NN_REGISTER_OPERATION(QUANTIZE, "QUANTIZE", quantize::validate, quantize::prepare,
|
||
|
quantize::execute, .allowZeroSizedInput = true);
|
||
|
|
||
|
} // namespace nn
|
||
|
} // namespace android
|