You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
150 lines
5.7 KiB
150 lines
5.7 KiB
4 months ago
|
/*
|
||
|
* Copyright (C) 2019 The Android Open Source Project
|
||
|
*
|
||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
* you may not use this file except in compliance with the License.
|
||
|
* You may obtain a copy of the License at
|
||
|
*
|
||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
* See the License for the specific language governing permissions and
|
||
|
* limitations under the License.
|
||
|
*/
|
||
|
|
||
|
// Contains the implementation of the operations.
|
||
|
|
||
|
#define LOG_TAG "Operations"
|
||
|
|
||
|
#include <vector>
|
||
|
|
||
|
#include "OperationResolver.h"
|
||
|
#include "Operations.h"
|
||
|
#include "Tracing.h"
|
||
|
|
||
|
namespace android {
|
||
|
namespace nn {
|
||
|
namespace squeeze {
|
||
|
|
||
|
constexpr uint32_t kNumInputs = 2;
|
||
|
constexpr uint32_t kInputTensor = 0;
|
||
|
constexpr uint32_t kSqueezeDims = 1;
|
||
|
|
||
|
constexpr uint32_t kNumOutputs = 1;
|
||
|
constexpr uint32_t kOutputTensor = 0;
|
||
|
|
||
|
Result<Version> validate(const IOperationValidationContext* context) {
|
||
|
NN_RET_CHECK_EQ(context->getNumInputs(), kNumInputs);
|
||
|
NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs);
|
||
|
OperandType inputType = context->getInputType(kInputTensor);
|
||
|
NN_RET_CHECK(inputType == OperandType::TENSOR_FLOAT16 ||
|
||
|
inputType == OperandType::TENSOR_FLOAT32 ||
|
||
|
inputType == OperandType::TENSOR_QUANT8_ASYMM ||
|
||
|
inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED)
|
||
|
<< "Unsupported input operand type for SQUEEZE op: " << inputType;
|
||
|
|
||
|
Version minSupportedVersion;
|
||
|
if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
|
||
|
minSupportedVersion = Version::ANDROID_R;
|
||
|
} else if (inputType == OperandType::TENSOR_FLOAT16) {
|
||
|
minSupportedVersion = Version::ANDROID_Q;
|
||
|
} else {
|
||
|
minSupportedVersion = Version::ANDROID_P;
|
||
|
}
|
||
|
|
||
|
NN_RET_CHECK(validateInputTypes(context, {
|
||
|
inputType,
|
||
|
OperandType::TENSOR_INT32,
|
||
|
}));
|
||
|
NN_RET_CHECK(validateOutputTypes(context, {inputType}));
|
||
|
const Shape& input = context->getInputShape(kInputTensor);
|
||
|
if (hasKnownRank(input)) {
|
||
|
NN_RET_CHECK_LE(getNumberOfDimensions(input), 4);
|
||
|
}
|
||
|
return minSupportedVersion;
|
||
|
}
|
||
|
|
||
|
#ifdef NN_INCLUDE_CPU_IMPLEMENTATION
|
||
|
bool prepare(IOperationExecutionContext* context) {
|
||
|
// Only the squeeze dims tensor can be omitted.
|
||
|
NN_RET_CHECK(!context->isOmittedInput(kInputTensor));
|
||
|
NN_RET_CHECK(!context->isOmittedOutput(kOutputTensor));
|
||
|
|
||
|
const int32_t* squeezeDims = context->getInputBuffer<int32_t>(kSqueezeDims);
|
||
|
const Shape inputShape = context->getInputShape(kInputTensor);
|
||
|
const Shape squeezeDimsShape = context->getInputShape(kSqueezeDims);
|
||
|
int32_t numInputDims = static_cast<int32_t>(getNumberOfDimensions(inputShape));
|
||
|
|
||
|
NN_RET_CHECK_LE(getNumberOfDimensions(inputShape), 4);
|
||
|
|
||
|
// squeezeDims need to be provided as a 1-D int32 tensor.
|
||
|
NN_OPS_CHECK(squeezeDimsShape.type == OperandType::TENSOR_INT32);
|
||
|
NN_OPS_CHECK(getNumberOfDimensions(squeezeDimsShape) == 1);
|
||
|
|
||
|
std::vector<bool> shouldSqueeze(numInputDims, false);
|
||
|
int32_t numDimsSqueezed = 0;
|
||
|
|
||
|
if (context->isOmittedInput(kSqueezeDims)) {
|
||
|
// If squeezeDims is omitted, all dims with value 1 will be squeezed.
|
||
|
for (int32_t idx = 0; idx < numInputDims; ++idx) {
|
||
|
if (getSizeOfDimension(inputShape, idx) == 1) {
|
||
|
shouldSqueeze[idx] = true;
|
||
|
++numDimsSqueezed;
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
int32_t squeezeDimsSize = static_cast<int32_t>(getSizeOfDimension(squeezeDimsShape, 0));
|
||
|
for (int32_t idx = 0; idx < squeezeDimsSize; ++idx) {
|
||
|
int32_t current =
|
||
|
squeezeDims[idx] < 0 ? squeezeDims[idx] + numInputDims : squeezeDims[idx];
|
||
|
NN_OPS_CHECK(current >= 0 && current < numInputDims &&
|
||
|
getSizeOfDimension(inputShape, current) == 1);
|
||
|
if (!shouldSqueeze[current]) ++numDimsSqueezed;
|
||
|
shouldSqueeze[current] = true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Sets output dimensions.
|
||
|
std::vector<uint32_t> outDims(numInputDims - numDimsSqueezed);
|
||
|
if (numInputDims == numDimsSqueezed) {
|
||
|
// Handle edge case where squeeze removes all dimensions.
|
||
|
outDims.push_back(1);
|
||
|
} else {
|
||
|
for (int32_t inIdx = 0, outIdx = 0; inIdx < numInputDims; ++inIdx) {
|
||
|
if (!shouldSqueeze[inIdx]) {
|
||
|
outDims[outIdx++] = getSizeOfDimension(inputShape, inIdx);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
Shape outputShape(inputShape);
|
||
|
outputShape.dimensions = outDims;
|
||
|
|
||
|
return context->setOutputShape(kOutputTensor, outputShape);
|
||
|
}
|
||
|
|
||
|
bool execute(IOperationExecutionContext* context) {
|
||
|
switch (context->getInputType(kInputTensor)) {
|
||
|
case OperandType::TENSOR_FLOAT16:
|
||
|
case OperandType::TENSOR_FLOAT32:
|
||
|
case OperandType::TENSOR_QUANT8_ASYMM:
|
||
|
case OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
|
||
|
return copyData(context->getInputBuffer(kInputTensor),
|
||
|
context->getInputShape(kInputTensor),
|
||
|
context->getOutputBuffer(kOutputTensor),
|
||
|
context->getOutputShape(kOutputTensor));
|
||
|
default:
|
||
|
NN_RET_CHECK_FAIL() << "Unsupported tensor type for SQUEEZE op.";
|
||
|
}
|
||
|
}
|
||
|
#endif // NN_INCLUDE_CPU_IMPLEMENTATION
|
||
|
|
||
|
} // namespace squeeze
|
||
|
|
||
|
NN_REGISTER_OPERATION(SQUEEZE, "SQUEEZE", squeeze::validate, squeeze::prepare, squeeze::execute,
|
||
|
.allowOmittedOperand = true);
|
||
|
|
||
|
} // namespace nn
|
||
|
} // namespace android
|