You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

369 lines
14 KiB

/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <algorithm>
#include <gtest/gtest.h>
#include <openssl/engine.h>
#include <openssl/rand.h>
#include <keymaster/android_keymaster_utils.h>
#include <keymaster/authorization_set.h>
#include <keymaster/key_blob_utils/auth_encrypted_key_blob.h>
#include <keymaster/key_blob_utils/integrity_assured_key_blob.h>
#include <keymaster/keymaster_tags.h>
#include <keymaster/km_openssl/software_random_source.h>
#include "android_keymaster_test_utils.h"
namespace keymaster {
namespace test {
namespace {
const uint8_t master_key_data[16] = {};
const uint8_t key_data[5] = {21, 22, 23, 24, 25};
} // namespace
class KeyBlobTest : public testing::Test, public SoftwareRandomSource {
protected:
KeyBlobTest()
: key_material_(key_data, array_length(key_data)),
master_key_(master_key_data, array_length(master_key_data)) {
hw_enforced_.push_back(TAG_ALGORITHM, KM_ALGORITHM_RSA);
hw_enforced_.push_back(TAG_KEY_SIZE, 256);
hw_enforced_.push_back(TAG_BLOB_USAGE_REQUIREMENTS, KM_BLOB_STANDALONE);
hw_enforced_.push_back(TAG_MIN_SECONDS_BETWEEN_OPS, 10);
hw_enforced_.push_back(TAG_ALL_USERS);
hw_enforced_.push_back(TAG_NO_AUTH_REQUIRED);
hw_enforced_.push_back(TAG_ORIGIN, KM_ORIGIN_GENERATED);
sw_enforced_.push_back(TAG_ACTIVE_DATETIME, 10);
sw_enforced_.push_back(TAG_ORIGINATION_EXPIRE_DATETIME, 100);
sw_enforced_.push_back(TAG_CREATION_DATETIME, 10);
hidden_.push_back(TAG_ROOT_OF_TRUST, "foo", 3);
hidden_.push_back(TAG_APPLICATION_ID, "my_app", 6);
}
keymaster_error_t Encrypt(AuthEncryptedBlobFormat format = AES_GCM_WITH_SW_ENFORCED) {
keymaster_error_t error;
encrypted_key_ = EncryptKey(key_material_, format, hw_enforced_, sw_enforced_, hidden_,
master_key_, *this, &error);
return error;
}
keymaster_error_t Decrypt() {
keymaster_error_t error;
decrypted_plaintext_ = DecryptKey(move(deserialized_key_), hidden_, master_key_, &error);
return error;
}
keymaster_error_t Serialize() {
keymaster_error_t error;
serialized_blob_ =
SerializeAuthEncryptedBlob(encrypted_key_, hw_enforced_, sw_enforced_, &error);
return error;
}
keymaster_error_t Deserialize() {
keymaster_error_t error;
deserialized_key_ = DeserializeAuthEncryptedBlob(serialized_blob_, &error);
return error;
}
// Encryption inputs
AuthorizationSet hw_enforced_;
AuthorizationSet sw_enforced_;
AuthorizationSet hidden_;
KeymasterKeyBlob key_material_;
KeymasterKeyBlob master_key_;
// Encryption output
EncryptedKey encrypted_key_;
// Serialization output
KeymasterKeyBlob serialized_blob_;
// Deserialization output
DeserializedKey deserialized_key_;
// Decryption output.
KeymasterKeyBlob decrypted_plaintext_;
};
TEST_F(KeyBlobTest, EncryptDecrypt) {
for (auto format : {AES_OCB, AES_GCM_WITH_SW_ENFORCED}) {
ASSERT_EQ(KM_ERROR_OK, Encrypt(format));
ASSERT_EQ(KM_ERROR_OK, Serialize());
// key_data shouldn't be anywhere in the blob, ciphertext should.
EXPECT_EQ(serialized_blob_.end(),
std::search(serialized_blob_.begin(), serialized_blob_.end(),
key_material_.begin(), key_material_.end()));
EXPECT_NE(serialized_blob_.end(),
std::search(serialized_blob_.begin(), serialized_blob_.end(),
encrypted_key_.ciphertext.begin(), encrypted_key_.ciphertext.end()));
keymaster_error_t error;
DeserializedKey deserialized = DeserializeAuthEncryptedBlob(serialized_blob_, &error);
ASSERT_EQ(KM_ERROR_OK, error);
EXPECT_EQ(hw_enforced_, deserialized.hw_enforced);
switch (format) {
case AES_OCB:
case AES_GCM_WITH_SW_ENFORCED:
EXPECT_EQ(sw_enforced_, deserialized.sw_enforced);
break;
}
KeymasterKeyBlob plaintext = DecryptKey(move(deserialized), hidden_, master_key_, &error);
ASSERT_EQ(key_material_.size(), plaintext.size());
EXPECT_TRUE(std::equal(key_material_.begin(), key_material_.end(), plaintext.begin()));
}
}
TEST_F(KeyBlobTest, WrongKeyLength) {
ASSERT_EQ(KM_ERROR_OK, Encrypt());
ASSERT_EQ(KM_ERROR_OK, Serialize());
// Modify the key length, shouldn't be able to parse.
serialized_blob_.writable_data()[1 /* version */ + 4 /* nonce len */ + 12 /* nonce */ + 3]++;
ASSERT_EQ(KM_ERROR_INVALID_KEY_BLOB, Deserialize());
}
TEST_F(KeyBlobTest, WrongNonce) {
ASSERT_EQ(KM_ERROR_OK, Encrypt());
ASSERT_EQ(KM_ERROR_OK, Serialize());
// Find the nonce, then modify it.
auto nonce_ptr = std::search(serialized_blob_.begin(), serialized_blob_.end(),
encrypted_key_.nonce.begin(), encrypted_key_.nonce.end());
ASSERT_NE(nonce_ptr, serialized_blob_.end());
(*const_cast<uint8_t*>(nonce_ptr))++;
// Deserialization shouldn't be affected, but decryption should fail.
ASSERT_EQ(KM_ERROR_OK, Deserialize());
ASSERT_EQ(KM_ERROR_INVALID_KEY_BLOB, Decrypt());
}
TEST_F(KeyBlobTest, WrongTag) {
ASSERT_EQ(KM_ERROR_OK, Encrypt());
ASSERT_EQ(KM_ERROR_OK, Serialize());
// Find the tag, then modify it.
auto tag_ptr = std::search(serialized_blob_.begin(), serialized_blob_.end(),
encrypted_key_.tag.begin(), encrypted_key_.tag.end());
ASSERT_NE(tag_ptr, serialized_blob_.end());
(*const_cast<uint8_t*>(tag_ptr))++;
// Deserialization shouldn't be affected, but decryption should fail.
ASSERT_EQ(KM_ERROR_OK, Deserialize());
ASSERT_EQ(KM_ERROR_INVALID_KEY_BLOB, Decrypt());
}
TEST_F(KeyBlobTest, WrongCiphertext) {
ASSERT_EQ(KM_ERROR_OK, Encrypt());
ASSERT_EQ(KM_ERROR_OK, Serialize());
// Find the ciphertext, then modify it.
auto ciphertext_ptr =
std::search(serialized_blob_.begin(), serialized_blob_.end(),
encrypted_key_.ciphertext.begin(), encrypted_key_.ciphertext.end());
ASSERT_NE(ciphertext_ptr, serialized_blob_.end());
(*const_cast<uint8_t*>(ciphertext_ptr))++;
// Deserialization shouldn't be affected, but decryption should fail.
ASSERT_EQ(KM_ERROR_OK, Deserialize());
ASSERT_EQ(KM_ERROR_INVALID_KEY_BLOB, Decrypt());
}
TEST_F(KeyBlobTest, WrongMasterKey) {
ASSERT_EQ(KM_ERROR_OK, Encrypt());
ASSERT_EQ(KM_ERROR_OK, Serialize());
uint8_t wrong_master_data[] = {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
KeymasterKeyBlob wrong_master(wrong_master_data, array_length(wrong_master_data));
// Decrypting with wrong master key should fail.
ASSERT_EQ(KM_ERROR_OK, Deserialize());
keymaster_error_t error;
DecryptKey(move(deserialized_key_), hidden_, wrong_master, &error);
ASSERT_EQ(KM_ERROR_INVALID_KEY_BLOB, error);
}
TEST_F(KeyBlobTest, WrongHwEnforced) {
ASSERT_EQ(KM_ERROR_OK, Encrypt());
ASSERT_EQ(KM_ERROR_OK, Serialize());
// Find enforced serialization data and modify it.
size_t hw_enforced_size = hw_enforced_.SerializedSize();
UniquePtr<uint8_t[]> hw_enforced_data(new uint8_t[hw_enforced_size]);
hw_enforced_.Serialize(hw_enforced_data.get(), hw_enforced_data.get() + hw_enforced_size);
auto hw_enforced_ptr =
std::search(serialized_blob_.begin(), serialized_blob_.end(), hw_enforced_data.get(),
hw_enforced_data.get() + hw_enforced_size);
ASSERT_NE(serialized_blob_.end(), hw_enforced_ptr);
(*(const_cast<uint8_t*>(hw_enforced_ptr) + hw_enforced_size - 1))++;
// Deserialization shouldn't be affected, but decryption should fail.
ASSERT_EQ(KM_ERROR_OK, Deserialize());
ASSERT_EQ(KM_ERROR_INVALID_KEY_BLOB, Decrypt());
}
TEST_F(KeyBlobTest, WrongSwEnforced) {
for (auto format : {AES_OCB, AES_GCM_WITH_SW_ENFORCED}) {
ASSERT_EQ(KM_ERROR_OK, Encrypt(format));
ASSERT_EQ(KM_ERROR_OK, Serialize());
// Find enforced serialization data and modify it.
size_t sw_enforced_size = sw_enforced_.SerializedSize();
UniquePtr<uint8_t[]> sw_enforced_data(new uint8_t[sw_enforced_size]);
sw_enforced_.Serialize(sw_enforced_data.get(), sw_enforced_data.get() + sw_enforced_size);
auto sw_enforced_ptr =
std::search(serialized_blob_.begin(), serialized_blob_.end(), sw_enforced_data.get(),
sw_enforced_data.get() + sw_enforced_size);
ASSERT_NE(serialized_blob_.end(), sw_enforced_ptr);
(*(const_cast<uint8_t*>(sw_enforced_ptr) + sw_enforced_size - 1))++;
// Deserialization shouldn't be affected, but decryption should fail.
ASSERT_EQ(KM_ERROR_OK, Deserialize());
ASSERT_EQ(KM_ERROR_INVALID_KEY_BLOB, Decrypt());
}
}
TEST_F(KeyBlobTest, EmptyHidden) {
ASSERT_EQ(KM_ERROR_OK, Encrypt());
ASSERT_EQ(KM_ERROR_OK, Serialize());
AuthorizationSet wrong_hidden;
// Deserialization shouldn't be affected, but decryption should fail.
ASSERT_EQ(KM_ERROR_OK, Deserialize());
keymaster_error_t error;
DecryptKey(move(deserialized_key_), wrong_hidden, master_key_, &error);
EXPECT_EQ(KM_ERROR_INVALID_KEY_BLOB, error);
}
TEST_F(KeyBlobTest, WrongRootOfTrust) {
ASSERT_EQ(KM_ERROR_OK, Encrypt());
ASSERT_EQ(KM_ERROR_OK, Serialize());
AuthorizationSet wrong_hidden;
wrong_hidden.push_back(TAG_ROOT_OF_TRUST, "bar", 2);
wrong_hidden.push_back(TAG_APPLICATION_ID, "my_app", 6);
// Deserialization shouldn't be affected, but decryption should fail.
ASSERT_EQ(KM_ERROR_OK, Deserialize());
keymaster_error_t error;
DecryptKey(move(deserialized_key_), wrong_hidden, master_key_, &error);
EXPECT_EQ(KM_ERROR_INVALID_KEY_BLOB, error);
}
TEST_F(KeyBlobTest, WrongAppId) {
ASSERT_EQ(KM_ERROR_OK, Encrypt());
ASSERT_EQ(KM_ERROR_OK, Serialize());
AuthorizationSet wrong_hidden;
wrong_hidden.push_back(TAG_ROOT_OF_TRUST, "foo", 3);
wrong_hidden.push_back(TAG_APPLICATION_ID, "your_app", 7);
// Deserialization shouldn't be affected, but decryption should fail.
ASSERT_EQ(KM_ERROR_OK, Deserialize());
keymaster_error_t error;
DecryptKey(move(deserialized_key_), wrong_hidden, master_key_, &error);
EXPECT_EQ(KM_ERROR_INVALID_KEY_BLOB, error);
}
// This test is especially useful when compiled for 32-bit mode and run under valgrind.
TEST_F(KeyBlobTest, FuzzTest) {
time_t now = time(NULL);
std::cout << "Seeding rand() with " << now << " for fuzz test." << std::endl;
srand(now);
// Fill large buffer with random bytes.
const int kBufSize = 10000;
UniquePtr<uint8_t[]> buf(new uint8_t[kBufSize]);
for (size_t i = 0; i < kBufSize; ++i)
buf[i] = static_cast<uint8_t>(rand());
// Try to deserialize every offset with multiple methods.
size_t deserialize_auth_encrypted_success = 0;
for (size_t i = 0; i < kBufSize; ++i) {
keymaster_key_blob_t blob = {buf.get() + i, kBufSize - i};
KeymasterKeyBlob key_blob(blob);
// Integrity-assured blob.
ASSERT_EQ(KM_ERROR_INVALID_KEY_BLOB,
DeserializeIntegrityAssuredBlob(key_blob, hidden_, &key_material_, &hw_enforced_,
&sw_enforced_));
// Auth-encrypted blob.
keymaster_error_t error;
auto deserialized = DeserializeAuthEncryptedBlob(key_blob, &error);
if (error == KM_ERROR_OK) {
// It's possible to deserialize successfully. Decryption should always fail.
++deserialize_auth_encrypted_success;
DecryptKey(move(deserialized), hidden_, master_key_, &error);
}
ASSERT_EQ(KM_ERROR_INVALID_KEY_BLOB, error)
<< "Somehow sucessfully parsed a blob with seed " << now << " at offset " << i;
}
}
TEST_F(KeyBlobTest, UnderflowTest) {
uint8_t buf[0];
keymaster_key_blob_t blob = {buf, 0};
KeymasterKeyBlob key_blob(blob);
EXPECT_NE(nullptr, key_blob.key_material);
EXPECT_EQ(0U, key_blob.key_material_size);
EXPECT_EQ(KM_ERROR_INVALID_KEY_BLOB,
DeserializeIntegrityAssuredBlob(key_blob, hidden_, &key_material_, &hw_enforced_,
&sw_enforced_));
keymaster_error_t error;
DeserializeAuthEncryptedBlob(key_blob, &error);
EXPECT_EQ(KM_ERROR_INVALID_KEY_BLOB, error);
}
TEST_F(KeyBlobTest, DupBufferToolarge) {
uint8_t buf[0];
keymaster_key_blob_t blob = {buf, 0};
blob.key_material_size = 16 * 1024 * 1024 + 1;
KeymasterKeyBlob key_blob(blob);
EXPECT_EQ(nullptr, key_blob.key_material);
EXPECT_EQ(0U, key_blob.key_material_size);
ASSERT_EQ(KM_ERROR_INVALID_KEY_BLOB,
DeserializeIntegrityAssuredBlob(key_blob, hidden_, &key_material_, &hw_enforced_,
&sw_enforced_));
keymaster_error_t error;
DeserializeAuthEncryptedBlob(key_blob, &error);
EXPECT_EQ(KM_ERROR_INVALID_KEY_BLOB, error);
}
} // namespace test
} // namespace keymaster