You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
144 lines
5.3 KiB
144 lines
5.3 KiB
4 months ago
|
/*
|
||
|
* Copyright (C) 2018 The Android Open Source Project
|
||
|
*
|
||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
* you may not use this file except in compliance with the License.
|
||
|
* You may obtain a copy of the License at
|
||
|
*
|
||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
* See the License for the specific language governing permissions and
|
||
|
* limitations under the License.
|
||
|
*/
|
||
|
|
||
|
#define LOG_TAG "Operations"
|
||
|
|
||
|
#include <algorithm>
|
||
|
#include <utility>
|
||
|
#include <vector>
|
||
|
|
||
|
#include "OperationResolver.h"
|
||
|
#include "OperationsUtils.h"
|
||
|
|
||
|
namespace android {
|
||
|
namespace nn {
|
||
|
namespace topk_v2 {
|
||
|
|
||
|
constexpr uint32_t kNumInputs = 2;
|
||
|
constexpr uint32_t kInputTensor = 0;
|
||
|
constexpr uint32_t kTopKScalar = 1;
|
||
|
|
||
|
constexpr uint32_t kNumOutputs = 2;
|
||
|
constexpr uint32_t kOutputValuesTensor = 0;
|
||
|
constexpr uint32_t kOutputIndicesTensor = 1;
|
||
|
|
||
|
namespace {
|
||
|
|
||
|
template <typename T>
|
||
|
bool evalGeneric(const T* inputData, const Shape& inputShape, const int32_t k, T* valuesData,
|
||
|
int32_t* indicesData) {
|
||
|
const int rowSize = inputShape.dimensions.back();
|
||
|
const int totalSize = getNumberOfElements(inputShape);
|
||
|
std::vector<std::pair<T, int32_t>> values(rowSize);
|
||
|
T* curOutputValue = valuesData;
|
||
|
int32_t* curOutputIndex = indicesData;
|
||
|
for (int rowBegin = 0; rowBegin < totalSize; rowBegin += rowSize) {
|
||
|
for (int i = 0; i < rowSize; ++i) {
|
||
|
values[i] = std::make_pair(inputData[rowBegin + i], i);
|
||
|
}
|
||
|
std::nth_element(values.begin(), values.begin() + (rowSize - k), values.end());
|
||
|
std::sort(values.begin() + (rowSize - k), values.end());
|
||
|
std::reverse(values.begin(), values.end());
|
||
|
for (int i = 0; i < k; ++i) {
|
||
|
*curOutputValue = values[i].first;
|
||
|
*curOutputIndex = values[i].second;
|
||
|
curOutputValue++;
|
||
|
curOutputIndex++;
|
||
|
}
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
bool executeTyped(IOperationExecutionContext* context) {
|
||
|
return evalGeneric(context->getInputBuffer<T>(kInputTensor),
|
||
|
context->getInputShape(kInputTensor),
|
||
|
context->getInputValue<int32_t>(kTopKScalar),
|
||
|
context->getOutputBuffer<T>(kOutputValuesTensor),
|
||
|
context->getOutputBuffer<int32_t>(kOutputIndicesTensor));
|
||
|
}
|
||
|
|
||
|
} // namespace
|
||
|
|
||
|
Result<Version> validate(const IOperationValidationContext* context) {
|
||
|
NN_RET_CHECK_EQ(context->getNumInputs(), kNumInputs);
|
||
|
NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs);
|
||
|
OperandType inputType = context->getInputType(kInputTensor);
|
||
|
NN_RET_CHECK(inputType == OperandType::TENSOR_FLOAT16 ||
|
||
|
inputType == OperandType::TENSOR_FLOAT32 ||
|
||
|
inputType == OperandType::TENSOR_INT32 ||
|
||
|
inputType == OperandType::TENSOR_QUANT8_ASYMM ||
|
||
|
inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED)
|
||
|
<< "Unsupported input operand type for select op: " << inputType;
|
||
|
NN_RET_CHECK(validateInputTypes(context, {inputType, OperandType::INT32}));
|
||
|
NN_RET_CHECK(validateOutputTypes(context, {inputType, OperandType::TENSOR_INT32}));
|
||
|
Version minSupportedVersion = Version::ANDROID_Q;
|
||
|
if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
|
||
|
minSupportedVersion = Version::ANDROID_R;
|
||
|
}
|
||
|
return minSupportedVersion;
|
||
|
}
|
||
|
|
||
|
bool prepare(IOperationExecutionContext* context) {
|
||
|
const Shape inputShape = context->getInputShape(kInputTensor);
|
||
|
const int32_t k = context->getInputValue<int32_t>(kTopKScalar);
|
||
|
NN_RET_CHECK_GT(k, 0);
|
||
|
NN_RET_CHECK_LE(k, inputShape.dimensions.back());
|
||
|
|
||
|
// Copy input shape to ensure that quantization parameters for the output
|
||
|
// values are the same as for the input tensor.
|
||
|
Shape outputValuesShape = inputShape;
|
||
|
outputValuesShape.dimensions.back() = k;
|
||
|
Shape outputIndicesShape;
|
||
|
outputIndicesShape.type = OperandType::TENSOR_INT32;
|
||
|
outputIndicesShape.dimensions = inputShape.dimensions;
|
||
|
outputIndicesShape.dimensions.back() = k;
|
||
|
return context->setOutputShape(kOutputValuesTensor, outputValuesShape) &&
|
||
|
context->setOutputShape(kOutputIndicesTensor, outputIndicesShape);
|
||
|
}
|
||
|
|
||
|
bool execute(IOperationExecutionContext* context) {
|
||
|
const Shape inputShape = context->getInputShape(kInputTensor);
|
||
|
switch (inputShape.type) {
|
||
|
case OperandType::TENSOR_FLOAT16: {
|
||
|
return executeTyped<_Float16>(context);
|
||
|
} break;
|
||
|
case OperandType::TENSOR_FLOAT32: {
|
||
|
return executeTyped<float>(context);
|
||
|
} break;
|
||
|
case OperandType::TENSOR_INT32: {
|
||
|
return executeTyped<int32_t>(context);
|
||
|
} break;
|
||
|
case OperandType::TENSOR_QUANT8_ASYMM: {
|
||
|
return executeTyped<uint8_t>(context);
|
||
|
} break;
|
||
|
case OperandType::TENSOR_QUANT8_ASYMM_SIGNED: {
|
||
|
return executeTyped<int8_t>(context);
|
||
|
} break;
|
||
|
default: {
|
||
|
LOG(ERROR) << "Unsupported data type: " << inputShape.type;
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
} // namespace topk_v2
|
||
|
|
||
|
NN_REGISTER_OPERATION(TOPK_V2, "TOPK_V2", topk_v2::validate, topk_v2::prepare, topk_v2::execute);
|
||
|
|
||
|
} // namespace nn
|
||
|
} // namespace android
|