You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
129 lines
4.4 KiB
129 lines
4.4 KiB
4 months ago
|
/*
|
||
|
* Copyright (C) 2019 The Android Open Source Project
|
||
|
*
|
||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
* you may not use this file except in compliance with the License.
|
||
|
* You may obtain a copy of the License at
|
||
|
*
|
||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
* See the License for the specific language governing permissions and
|
||
|
* limitations under the License.
|
||
|
*/
|
||
|
|
||
|
// This file tests that various abnormal uses of ANeuralNetworks*_free() don't crash.
|
||
|
//
|
||
|
// Limitation: It doesn't set various combinations of properties on objects before
|
||
|
// freeing those objects.
|
||
|
|
||
|
#include <gtest/gtest.h>
|
||
|
|
||
|
#include <vector>
|
||
|
|
||
|
#include "NeuralNetworks.h"
|
||
|
|
||
|
namespace {
|
||
|
|
||
|
ANeuralNetworksModel* createUnfinishedModel() {
|
||
|
ANeuralNetworksModel* model = nullptr;
|
||
|
EXPECT_EQ(ANeuralNetworksModel_create(&model), ANEURALNETWORKS_NO_ERROR);
|
||
|
|
||
|
uint32_t dimensions[] = {1};
|
||
|
ANeuralNetworksOperandType type = {
|
||
|
.type = ANEURALNETWORKS_TENSOR_FLOAT32, .dimensionCount = 1, .dimensions = dimensions};
|
||
|
EXPECT_EQ(ANeuralNetworksModel_addOperand(model, &type), ANEURALNETWORKS_NO_ERROR);
|
||
|
EXPECT_EQ(ANeuralNetworksModel_addOperand(model, &type), ANEURALNETWORKS_NO_ERROR);
|
||
|
|
||
|
const uint32_t inList[]{0};
|
||
|
const uint32_t outList[]{1};
|
||
|
EXPECT_EQ(
|
||
|
ANeuralNetworksModel_addOperation(model, ANEURALNETWORKS_FLOOR, 1, inList, 1, outList),
|
||
|
ANEURALNETWORKS_NO_ERROR);
|
||
|
EXPECT_EQ(ANeuralNetworksModel_identifyInputsAndOutputs(model, 1, inList, 1, outList),
|
||
|
ANEURALNETWORKS_NO_ERROR);
|
||
|
|
||
|
return model;
|
||
|
}
|
||
|
|
||
|
ANeuralNetworksModel* createFinishedModel() {
|
||
|
ANeuralNetworksModel* const model = createUnfinishedModel();
|
||
|
EXPECT_EQ(ANeuralNetworksModel_finish(model), ANEURALNETWORKS_NO_ERROR);
|
||
|
return model;
|
||
|
}
|
||
|
|
||
|
std::vector<ANeuralNetworksDevice*> createDeviceList() {
|
||
|
std::vector<ANeuralNetworksDevice*> devices;
|
||
|
|
||
|
uint32_t numDevices = 0;
|
||
|
EXPECT_EQ(ANeuralNetworks_getDeviceCount(&numDevices), ANEURALNETWORKS_NO_ERROR);
|
||
|
for (uint32_t devIndex = 0; devIndex < numDevices; ++devIndex) {
|
||
|
ANeuralNetworksDevice* device = nullptr;
|
||
|
const int getDeviceStatus = ANeuralNetworks_getDevice(devIndex, &device);
|
||
|
EXPECT_EQ(getDeviceStatus, ANEURALNETWORKS_NO_ERROR);
|
||
|
if (getDeviceStatus == ANEURALNETWORKS_NO_ERROR) {
|
||
|
devices.push_back(device);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return devices;
|
||
|
}
|
||
|
|
||
|
TEST(Free, Null) {
|
||
|
ANeuralNetworksBurst_free(nullptr);
|
||
|
ANeuralNetworksCompilation_free(nullptr);
|
||
|
ANeuralNetworksEvent_free(nullptr);
|
||
|
ANeuralNetworksExecution_free(nullptr);
|
||
|
ANeuralNetworksMemory_free(nullptr);
|
||
|
ANeuralNetworksModel_free(nullptr);
|
||
|
}
|
||
|
|
||
|
TEST(Free, UnfinishedModel) {
|
||
|
ANeuralNetworksModel* const model = createUnfinishedModel();
|
||
|
ANeuralNetworksModel_free(model);
|
||
|
}
|
||
|
|
||
|
TEST(Free, UnfinishedCompilation) {
|
||
|
ANeuralNetworksModel* const model = createFinishedModel();
|
||
|
|
||
|
ANeuralNetworksCompilation* compilation = nullptr;
|
||
|
ASSERT_EQ(ANeuralNetworksCompilation_create(model, &compilation), ANEURALNETWORKS_NO_ERROR);
|
||
|
ANeuralNetworksCompilation_free(compilation);
|
||
|
|
||
|
ANeuralNetworksModel_free(model);
|
||
|
}
|
||
|
|
||
|
TEST(Free, UnfinishedCompilationForDevices) {
|
||
|
ANeuralNetworksModel* const model = createFinishedModel();
|
||
|
|
||
|
const auto devices = createDeviceList();
|
||
|
|
||
|
ANeuralNetworksCompilation* compilation = nullptr;
|
||
|
ASSERT_EQ(ANeuralNetworksCompilation_createForDevices(model, devices.data(), devices.size(),
|
||
|
&compilation),
|
||
|
ANEURALNETWORKS_NO_ERROR);
|
||
|
ANeuralNetworksCompilation_free(compilation);
|
||
|
|
||
|
ANeuralNetworksModel_free(model);
|
||
|
}
|
||
|
|
||
|
TEST(Free, UnscheduledExecution) {
|
||
|
ANeuralNetworksModel* const model = createFinishedModel();
|
||
|
|
||
|
ANeuralNetworksCompilation* compilation = nullptr;
|
||
|
ASSERT_EQ(ANeuralNetworksCompilation_create(model, &compilation), ANEURALNETWORKS_NO_ERROR);
|
||
|
ASSERT_EQ(ANeuralNetworksCompilation_finish(compilation), ANEURALNETWORKS_NO_ERROR);
|
||
|
|
||
|
ANeuralNetworksExecution* execution = nullptr;
|
||
|
ASSERT_EQ(ANeuralNetworksExecution_create(compilation, &execution), ANEURALNETWORKS_NO_ERROR);
|
||
|
ANeuralNetworksExecution_free(execution);
|
||
|
|
||
|
ANeuralNetworksCompilation_free(compilation);
|
||
|
|
||
|
ANeuralNetworksModel_free(model);
|
||
|
}
|
||
|
|
||
|
} // namespace
|