You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

597 lines
20 KiB

//=-- asan_str_test.cc ----------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of AddressSanitizer, an address sanity checker.
//
//===----------------------------------------------------------------------===//
#include "asan_test_utils.h"
#if defined(__APPLE__)
#include <AvailabilityMacros.h> // For MAC_OS_X_VERSION_*
#endif
// Used for string functions tests
static char global_string[] = "global";
static size_t global_string_length = 6;
const char kStackReadUnderflow[] =
#if !GTEST_USES_SIMPLE_RE
ASAN_PCRE_DOTALL
"READ.*"
#endif
"underflows this variable";
const char kStackReadOverflow[] =
#if !GTEST_USES_SIMPLE_RE
ASAN_PCRE_DOTALL
"READ.*"
#endif
"overflows this variable";
namespace {
enum class OOBKind {
Heap,
Stack,
Global,
};
string LeftOOBReadMessage(OOBKind oob_kind, int oob_distance) {
return oob_kind == OOBKind::Stack ? kStackReadUnderflow
: ::LeftOOBReadMessage(oob_distance);
}
string RightOOBReadMessage(OOBKind oob_kind, int oob_distance) {
return oob_kind == OOBKind::Stack ? kStackReadOverflow
: ::RightOOBReadMessage(oob_distance);
}
} // namespace
// Input to a test is a zero-terminated string str with given length
// Accesses to the bytes to the left and to the right of str
// are presumed to produce OOB errors
void StrLenOOBTestTemplate(char *str, size_t length, OOBKind oob_kind) {
// Normal strlen calls
EXPECT_EQ(strlen(str), length);
if (length > 0) {
EXPECT_EQ(length - 1, strlen(str + 1));
EXPECT_EQ(0U, strlen(str + length));
}
// Arg of strlen is not malloced, OOB access
if (oob_kind != OOBKind::Global) {
// We don't insert RedZones to the left of global variables
EXPECT_DEATH(Ident(strlen(str - 1)), LeftOOBReadMessage(oob_kind, 1));
EXPECT_DEATH(Ident(strlen(str - 5)), LeftOOBReadMessage(oob_kind, 5));
}
EXPECT_DEATH(Ident(strlen(str + length + 1)),
RightOOBReadMessage(oob_kind, 0));
// Overwrite terminator
str[length] = 'a';
// String is not zero-terminated, strlen will lead to OOB access
EXPECT_DEATH(Ident(strlen(str)), RightOOBReadMessage(oob_kind, 0));
EXPECT_DEATH(Ident(strlen(str + length)), RightOOBReadMessage(oob_kind, 0));
// Restore terminator
str[length] = 0;
}
TEST(AddressSanitizer, StrLenOOBTest) {
// Check heap-allocated string
size_t length = Ident(10);
char *heap_string = Ident((char*)malloc(length + 1));
char stack_string[10 + 1];
break_optimization(&stack_string);
for (size_t i = 0; i < length; i++) {
heap_string[i] = 'a';
stack_string[i] = 'b';
}
heap_string[length] = 0;
stack_string[length] = 0;
StrLenOOBTestTemplate(heap_string, length, OOBKind::Heap);
StrLenOOBTestTemplate(stack_string, length, OOBKind::Stack);
StrLenOOBTestTemplate(global_string, global_string_length, OOBKind::Global);
free(heap_string);
}
TEST(AddressSanitizer, WcsLenTest) {
EXPECT_EQ(0U, wcslen(Ident(L"")));
size_t hello_len = 13;
size_t hello_size = (hello_len + 1) * sizeof(wchar_t);
EXPECT_EQ(hello_len, wcslen(Ident(L"Hello, World!")));
wchar_t *heap_string = Ident((wchar_t*)malloc(hello_size));
memcpy(heap_string, L"Hello, World!", hello_size);
EXPECT_EQ(hello_len, Ident(wcslen(heap_string)));
EXPECT_DEATH(Ident(wcslen(heap_string + 14)), RightOOBReadMessage(0));
free(heap_string);
}
#if SANITIZER_TEST_HAS_STRNLEN
TEST(AddressSanitizer, StrNLenOOBTest) {
size_t size = Ident(123);
char *str = MallocAndMemsetString(size);
// Normal strnlen calls.
Ident(strnlen(str - 1, 0));
Ident(strnlen(str, size));
Ident(strnlen(str + size - 1, 1));
str[size - 1] = '\0';
Ident(strnlen(str, 2 * size));
// Argument points to not allocated memory.
EXPECT_DEATH(Ident(strnlen(str - 1, 1)), LeftOOBReadMessage(1));
EXPECT_DEATH(Ident(strnlen(str + size, 1)), RightOOBReadMessage(0));
// Overwrite the terminating '\0' and hit unallocated memory.
str[size - 1] = 'z';
EXPECT_DEATH(Ident(strnlen(str, size + 1)), RightOOBReadMessage(0));
free(str);
}
#endif // SANITIZER_TEST_HAS_STRNLEN
TEST(AddressSanitizer, StrDupOOBTest) {
size_t size = Ident(42);
char *str = MallocAndMemsetString(size);
char *new_str;
// Normal strdup calls.
str[size - 1] = '\0';
new_str = strdup(str);
free(new_str);
new_str = strdup(str + size - 1);
free(new_str);
// Argument points to not allocated memory.
EXPECT_DEATH(Ident(strdup(str - 1)), LeftOOBReadMessage(1));
EXPECT_DEATH(Ident(strdup(str + size)), RightOOBReadMessage(0));
// Overwrite the terminating '\0' and hit unallocated memory.
str[size - 1] = 'z';
EXPECT_DEATH(Ident(strdup(str)), RightOOBReadMessage(0));
free(str);
}
TEST(AddressSanitizer, StrCpyOOBTest) {
size_t to_size = Ident(30);
size_t from_size = Ident(6); // less than to_size
char *to = Ident((char*)malloc(to_size));
char *from = Ident((char*)malloc(from_size));
// Normal strcpy calls.
strcpy(from, "hello");
strcpy(to, from);
strcpy(to + to_size - from_size, from);
// Length of "from" is too small.
EXPECT_DEATH(Ident(strcpy(from, "hello2")), RightOOBWriteMessage(0));
// "to" or "from" points to not allocated memory.
EXPECT_DEATH(Ident(strcpy(to - 1, from)), LeftOOBWriteMessage(1));
EXPECT_DEATH(Ident(strcpy(to, from - 1)), LeftOOBReadMessage(1));
EXPECT_DEATH(Ident(strcpy(to, from + from_size)), RightOOBReadMessage(0));
EXPECT_DEATH(Ident(strcpy(to + to_size, from)), RightOOBWriteMessage(0));
// Overwrite the terminating '\0' character and hit unallocated memory.
from[from_size - 1] = '!';
EXPECT_DEATH(Ident(strcpy(to, from)), RightOOBReadMessage(0));
free(to);
free(from);
}
TEST(AddressSanitizer, StrNCpyOOBTest) {
size_t to_size = Ident(20);
size_t from_size = Ident(6); // less than to_size
char *to = Ident((char*)malloc(to_size));
// From is a zero-terminated string "hello\0" of length 6
char *from = Ident((char*)malloc(from_size));
strcpy(from, "hello");
// copy 0 bytes
strncpy(to, from, 0);
strncpy(to - 1, from - 1, 0);
// normal strncpy calls
strncpy(to, from, from_size);
strncpy(to, from, to_size);
strncpy(to, from + from_size - 1, to_size);
strncpy(to + to_size - 1, from, 1);
// One of {to, from} points to not allocated memory
EXPECT_DEATH(Ident(strncpy(to, from - 1, from_size)),
LeftOOBReadMessage(1));
EXPECT_DEATH(Ident(strncpy(to - 1, from, from_size)),
LeftOOBWriteMessage(1));
EXPECT_DEATH(Ident(strncpy(to, from + from_size, 1)),
RightOOBReadMessage(0));
EXPECT_DEATH(Ident(strncpy(to + to_size, from, 1)),
RightOOBWriteMessage(0));
// Length of "to" is too small
EXPECT_DEATH(Ident(strncpy(to + to_size - from_size + 1, from, from_size)),
RightOOBWriteMessage(0));
EXPECT_DEATH(Ident(strncpy(to + 1, from, to_size)),
RightOOBWriteMessage(0));
// Overwrite terminator in from
from[from_size - 1] = '!';
// normal strncpy call
strncpy(to, from, from_size);
// Length of "from" is too small
EXPECT_DEATH(Ident(strncpy(to, from, to_size)),
RightOOBReadMessage(0));
free(to);
free(from);
}
// Users may have different definitions of "strchr" and "index", so provide
// function pointer typedefs and overload RunStrChrTest implementation.
// We can't use macro for RunStrChrTest body here, as this macro would
// confuse EXPECT_DEATH gtest macro.
typedef char*(*PointerToStrChr1)(const char*, int);
typedef char*(*PointerToStrChr2)(char*, int);
template<typename StrChrFn>
static void RunStrChrTestImpl(StrChrFn *StrChr) {
size_t size = Ident(100);
char *str = MallocAndMemsetString(size);
str[10] = 'q';
str[11] = '\0';
EXPECT_EQ(str, StrChr(str, 'z'));
EXPECT_EQ(str + 10, StrChr(str, 'q'));
EXPECT_EQ(NULL, StrChr(str, 'a'));
// StrChr argument points to not allocated memory.
EXPECT_DEATH(Ident(StrChr(str - 1, 'z')), LeftOOBReadMessage(1));
EXPECT_DEATH(Ident(StrChr(str + size, 'z')), RightOOBReadMessage(0));
// Overwrite the terminator and hit not allocated memory.
str[11] = 'z';
EXPECT_DEATH(Ident(StrChr(str, 'a')), RightOOBReadMessage(0));
free(str);
}
// Prefer to use the standard signature if both are available.
UNUSED static void RunStrChrTest(PointerToStrChr1 StrChr, ...) {
RunStrChrTestImpl(StrChr);
}
UNUSED static void RunStrChrTest(PointerToStrChr2 StrChr, int) {
RunStrChrTestImpl(StrChr);
}
TEST(AddressSanitizer, StrChrAndIndexOOBTest) {
RunStrChrTest(&strchr, 0);
// No index() on Windows and on Android L.
#if !defined(_WIN32) && !defined(__ANDROID__)
RunStrChrTest(&index, 0);
#endif
}
TEST(AddressSanitizer, StrCmpAndFriendsLogicTest) {
// strcmp
EXPECT_EQ(0, strcmp("", ""));
EXPECT_EQ(0, strcmp("abcd", "abcd"));
EXPECT_GT(0, strcmp("ab", "ac"));
EXPECT_GT(0, strcmp("abc", "abcd"));
EXPECT_LT(0, strcmp("acc", "abc"));
EXPECT_LT(0, strcmp("abcd", "abc"));
// strncmp
EXPECT_EQ(0, strncmp("a", "b", 0));
EXPECT_EQ(0, strncmp("abcd", "abcd", 10));
EXPECT_EQ(0, strncmp("abcd", "abcef", 3));
EXPECT_GT(0, strncmp("abcde", "abcfa", 4));
EXPECT_GT(0, strncmp("a", "b", 5));
EXPECT_GT(0, strncmp("bc", "bcde", 4));
EXPECT_LT(0, strncmp("xyz", "xyy", 10));
EXPECT_LT(0, strncmp("baa", "aaa", 1));
EXPECT_LT(0, strncmp("zyx", "", 2));
#if !defined(_WIN32) // no str[n]casecmp on Windows.
// strcasecmp
EXPECT_EQ(0, strcasecmp("", ""));
EXPECT_EQ(0, strcasecmp("zzz", "zzz"));
EXPECT_EQ(0, strcasecmp("abCD", "ABcd"));
EXPECT_GT(0, strcasecmp("aB", "Ac"));
EXPECT_GT(0, strcasecmp("ABC", "ABCd"));
EXPECT_LT(0, strcasecmp("acc", "abc"));
EXPECT_LT(0, strcasecmp("ABCd", "abc"));
// strncasecmp
EXPECT_EQ(0, strncasecmp("a", "b", 0));
EXPECT_EQ(0, strncasecmp("abCD", "ABcd", 10));
EXPECT_EQ(0, strncasecmp("abCd", "ABcef", 3));
EXPECT_GT(0, strncasecmp("abcde", "ABCfa", 4));
EXPECT_GT(0, strncasecmp("a", "B", 5));
EXPECT_GT(0, strncasecmp("bc", "BCde", 4));
EXPECT_LT(0, strncasecmp("xyz", "xyy", 10));
EXPECT_LT(0, strncasecmp("Baa", "aaa", 1));
EXPECT_LT(0, strncasecmp("zyx", "", 2));
#endif
// memcmp
EXPECT_EQ(0, memcmp("a", "b", 0));
EXPECT_EQ(0, memcmp("ab\0c", "ab\0c", 4));
EXPECT_GT(0, memcmp("\0ab", "\0ac", 3));
EXPECT_GT(0, memcmp("abb\0", "abba", 4));
EXPECT_LT(0, memcmp("ab\0cd", "ab\0c\0", 5));
EXPECT_LT(0, memcmp("zza", "zyx", 3));
}
typedef int(*PointerToStrCmp)(const char*, const char*);
void RunStrCmpTest(PointerToStrCmp StrCmp) {
size_t size = Ident(100);
int fill = 'o';
char *s1 = MallocAndMemsetString(size, fill);
char *s2 = MallocAndMemsetString(size, fill);
s1[size - 1] = '\0';
s2[size - 1] = '\0';
// Normal StrCmp calls
Ident(StrCmp(s1, s2));
Ident(StrCmp(s1, s2 + size - 1));
Ident(StrCmp(s1 + size - 1, s2 + size - 1));
// One of arguments points to not allocated memory.
EXPECT_DEATH(Ident(StrCmp)(s1 - 1, s2), LeftOOBReadMessage(1));
EXPECT_DEATH(Ident(StrCmp)(s1, s2 - 1), LeftOOBReadMessage(1));
EXPECT_DEATH(Ident(StrCmp)(s1 + size, s2), RightOOBReadMessage(0));
EXPECT_DEATH(Ident(StrCmp)(s1, s2 + size), RightOOBReadMessage(0));
// Hit unallocated memory and die.
s1[size - 1] = fill;
EXPECT_DEATH(Ident(StrCmp)(s1, s1), RightOOBReadMessage(0));
EXPECT_DEATH(Ident(StrCmp)(s1 + size - 1, s2), RightOOBReadMessage(0));
free(s1);
free(s2);
}
TEST(AddressSanitizer, StrCmpOOBTest) {
RunStrCmpTest(&strcmp);
}
#if !defined(_WIN32) // no str[n]casecmp on Windows.
TEST(AddressSanitizer, StrCaseCmpOOBTest) {
RunStrCmpTest(&strcasecmp);
}
#endif
typedef int(*PointerToStrNCmp)(const char*, const char*, size_t);
void RunStrNCmpTest(PointerToStrNCmp StrNCmp) {
size_t size = Ident(100);
char *s1 = MallocAndMemsetString(size);
char *s2 = MallocAndMemsetString(size);
s1[size - 1] = '\0';
s2[size - 1] = '\0';
// Normal StrNCmp calls
Ident(StrNCmp(s1, s2, size + 2));
s1[size - 1] = 'z';
s2[size - 1] = 'x';
Ident(StrNCmp(s1 + size - 2, s2 + size - 2, size));
s2[size - 1] = 'z';
Ident(StrNCmp(s1 - 1, s2 - 1, 0));
Ident(StrNCmp(s1 + size - 1, s2 + size - 1, 1));
// One of arguments points to not allocated memory.
EXPECT_DEATH(Ident(StrNCmp)(s1 - 1, s2, 1), LeftOOBReadMessage(1));
EXPECT_DEATH(Ident(StrNCmp)(s1, s2 - 1, 1), LeftOOBReadMessage(1));
EXPECT_DEATH(Ident(StrNCmp)(s1 + size, s2, 1), RightOOBReadMessage(0));
EXPECT_DEATH(Ident(StrNCmp)(s1, s2 + size, 1), RightOOBReadMessage(0));
// Hit unallocated memory and die.
EXPECT_DEATH(Ident(StrNCmp)(s1 + 1, s2 + 1, size), RightOOBReadMessage(0));
EXPECT_DEATH(Ident(StrNCmp)(s1 + size - 1, s2, 2), RightOOBReadMessage(0));
free(s1);
free(s2);
}
TEST(AddressSanitizer, StrNCmpOOBTest) {
RunStrNCmpTest(&strncmp);
}
#if !defined(_WIN32) // no str[n]casecmp on Windows.
TEST(AddressSanitizer, StrNCaseCmpOOBTest) {
RunStrNCmpTest(&strncasecmp);
}
#endif
TEST(AddressSanitizer, StrCatOOBTest) {
// strcat() reads strlen(to) bytes from |to| before concatenating.
size_t to_size = Ident(100);
char *to = MallocAndMemsetString(to_size);
to[0] = '\0';
size_t from_size = Ident(20);
char *from = MallocAndMemsetString(from_size);
from[from_size - 1] = '\0';
// Normal strcat calls.
strcat(to, from);
strcat(to, from);
strcat(to + from_size, from + from_size - 2);
// Passing an invalid pointer is an error even when concatenating an empty
// string.
EXPECT_DEATH(strcat(to - 1, from + from_size - 1), LeftOOBAccessMessage(1));
// One of arguments points to not allocated memory.
EXPECT_DEATH(strcat(to - 1, from), LeftOOBAccessMessage(1));
EXPECT_DEATH(strcat(to, from - 1), LeftOOBReadMessage(1));
EXPECT_DEATH(strcat(to, from + from_size), RightOOBReadMessage(0));
// "from" is not zero-terminated.
from[from_size - 1] = 'z';
EXPECT_DEATH(strcat(to, from), RightOOBReadMessage(0));
from[from_size - 1] = '\0';
// "to" is too short to fit "from".
memset(to, 'z', to_size);
to[to_size - from_size + 1] = '\0';
EXPECT_DEATH(strcat(to, from), RightOOBWriteMessage(0));
// length of "to" is just enough.
strcat(to, from + 1);
free(to);
free(from);
}
TEST(AddressSanitizer, StrNCatOOBTest) {
// strncat() reads strlen(to) bytes from |to| before concatenating.
size_t to_size = Ident(100);
char *to = MallocAndMemsetString(to_size);
to[0] = '\0';
size_t from_size = Ident(20);
char *from = MallocAndMemsetString(from_size);
// Normal strncat calls.
strncat(to, from, 0);
strncat(to, from, from_size);
from[from_size - 1] = '\0';
strncat(to, from, 2 * from_size);
// Catenating empty string with an invalid string is still an error.
EXPECT_DEATH(strncat(to - 1, from, 0), LeftOOBAccessMessage(1));
strncat(to, from + from_size - 1, 10);
// One of arguments points to not allocated memory.
EXPECT_DEATH(strncat(to - 1, from, 2), LeftOOBAccessMessage(1));
EXPECT_DEATH(strncat(to, from - 1, 2), LeftOOBReadMessage(1));
EXPECT_DEATH(strncat(to, from + from_size, 2), RightOOBReadMessage(0));
memset(from, 'z', from_size);
memset(to, 'z', to_size);
to[0] = '\0';
// "from" is too short.
EXPECT_DEATH(strncat(to, from, from_size + 1), RightOOBReadMessage(0));
// "to" is too short to fit "from".
to[0] = 'z';
to[to_size - from_size + 1] = '\0';
EXPECT_DEATH(strncat(to, from, from_size - 1), RightOOBWriteMessage(0));
// "to" is just enough.
strncat(to, from, from_size - 2);
free(to);
free(from);
}
static string OverlapErrorMessage(const string &func) {
return func + "-param-overlap";
}
TEST(AddressSanitizer, StrArgsOverlapTest) {
size_t size = Ident(100);
char *str = Ident((char*)malloc(size));
// Do not check memcpy() on OS X 10.7 and later, where it actually aliases
// memmove().
#if !defined(__APPLE__) || !defined(MAC_OS_X_VERSION_10_7) || \
(MAC_OS_X_VERSION_MAX_ALLOWED < MAC_OS_X_VERSION_10_7)
// Check "memcpy". Use Ident() to avoid inlining.
memset(str, 'z', size);
Ident(memcpy)(str + 1, str + 11, 10);
Ident(memcpy)(str, str, 0);
EXPECT_DEATH(Ident(memcpy)(str, str + 14, 15), OverlapErrorMessage("memcpy"));
EXPECT_DEATH(Ident(memcpy)(str + 14, str, 15), OverlapErrorMessage("memcpy"));
#endif
// We do not treat memcpy with to==from as a bug.
// See http://llvm.org/bugs/show_bug.cgi?id=11763.
// EXPECT_DEATH(Ident(memcpy)(str + 20, str + 20, 1),
// OverlapErrorMessage("memcpy"));
// Check "strcpy".
memset(str, 'z', size);
str[9] = '\0';
strcpy(str + 10, str);
EXPECT_DEATH(strcpy(str + 9, str), OverlapErrorMessage("strcpy"));
EXPECT_DEATH(strcpy(str, str + 4), OverlapErrorMessage("strcpy"));
strcpy(str, str + 5);
// Check "strncpy".
memset(str, 'z', size);
strncpy(str, str + 10, 10);
EXPECT_DEATH(strncpy(str, str + 9, 10), OverlapErrorMessage("strncpy"));
EXPECT_DEATH(strncpy(str + 9, str, 10), OverlapErrorMessage("strncpy"));
str[10] = '\0';
strncpy(str + 11, str, 20);
EXPECT_DEATH(strncpy(str + 10, str, 20), OverlapErrorMessage("strncpy"));
// Check "strcat".
memset(str, 'z', size);
str[10] = '\0';
str[20] = '\0';
strcat(str, str + 10);
EXPECT_DEATH(strcat(str, str + 11), OverlapErrorMessage("strcat"));
str[10] = '\0';
strcat(str + 11, str);
EXPECT_DEATH(strcat(str, str + 9), OverlapErrorMessage("strcat"));
EXPECT_DEATH(strcat(str + 9, str), OverlapErrorMessage("strcat"));
EXPECT_DEATH(strcat(str + 10, str), OverlapErrorMessage("strcat"));
// Check "strncat".
memset(str, 'z', size);
str[10] = '\0';
strncat(str, str + 10, 10); // from is empty
EXPECT_DEATH(strncat(str, str + 11, 10), OverlapErrorMessage("strncat"));
str[10] = '\0';
str[20] = '\0';
strncat(str + 5, str, 5);
str[10] = '\0';
EXPECT_DEATH(strncat(str + 5, str, 6), OverlapErrorMessage("strncat"));
EXPECT_DEATH(strncat(str, str + 9, 10), OverlapErrorMessage("strncat"));
free(str);
}
typedef void(*PointerToCallAtoi)(const char*);
void RunAtoiOOBTest(PointerToCallAtoi Atoi) {
char *array = MallocAndMemsetString(10, '1');
// Invalid pointer to the string.
EXPECT_DEATH(Atoi(array + 11), RightOOBReadMessage(1));
EXPECT_DEATH(Atoi(array - 1), LeftOOBReadMessage(1));
// Die if a buffer doesn't have terminating NULL.
EXPECT_DEATH(Atoi(array), RightOOBReadMessage(0));
// Make last symbol a terminating NULL
array[9] = '\0';
Atoi(array);
// Sometimes we need to detect overflow if no digits are found.
memset(array, ' ', 10);
EXPECT_DEATH(Atoi(array), RightOOBReadMessage(0));
array[9] = '-';
EXPECT_DEATH(Atoi(array), RightOOBReadMessage(0));
EXPECT_DEATH(Atoi(array + 9), RightOOBReadMessage(0));
free(array);
}
#if !defined(_WIN32) // FIXME: Fix and enable on Windows.
void CallAtoi(const char *nptr) {
Ident(atoi(nptr));
}
void CallAtol(const char *nptr) {
Ident(atol(nptr));
}
void CallAtoll(const char *nptr) {
Ident(atoll(nptr));
}
TEST(AddressSanitizer, AtoiAndFriendsOOBTest) {
RunAtoiOOBTest(&CallAtoi);
RunAtoiOOBTest(&CallAtol);
RunAtoiOOBTest(&CallAtoll);
}
#endif
typedef void(*PointerToCallStrtol)(const char*, char**, int);
void RunStrtolOOBTest(PointerToCallStrtol Strtol) {
char *array = MallocAndMemsetString(3);
array[0] = '1';
array[1] = '2';
array[2] = '3';
// Invalid pointer to the string.
EXPECT_DEATH(Strtol(array + 3, NULL, 0), RightOOBReadMessage(0));
EXPECT_DEATH(Strtol(array - 1, NULL, 0), LeftOOBReadMessage(1));
// Buffer overflow if there is no terminating null (depends on base).
EXPECT_DEATH(Strtol(array, NULL, 0), RightOOBReadMessage(0));
array[2] = 'z';
EXPECT_DEATH(Strtol(array, NULL, 36), RightOOBReadMessage(0));
// Add terminating zero to get rid of overflow.
array[2] = '\0';
Strtol(array, NULL, 36);
// Sometimes we need to detect overflow if no digits are found.
array[0] = array[1] = array[2] = ' ';
EXPECT_DEATH(Strtol(array, NULL, 0), RightOOBReadMessage(0));
array[2] = '+';
EXPECT_DEATH(Strtol(array, NULL, 0), RightOOBReadMessage(0));
array[2] = '-';
EXPECT_DEATH(Strtol(array, NULL, 0), RightOOBReadMessage(0));
free(array);
}
#if !defined(_WIN32) // FIXME: Fix and enable on Windows.
void CallStrtol(const char *nptr, char **endptr, int base) {
Ident(strtol(nptr, endptr, base));
}
void CallStrtoll(const char *nptr, char **endptr, int base) {
Ident(strtoll(nptr, endptr, base));
}
TEST(AddressSanitizer, StrtollOOBTest) {
RunStrtolOOBTest(&CallStrtoll);
}
TEST(AddressSanitizer, StrtolOOBTest) {
RunStrtolOOBTest(&CallStrtol);
}
#endif