You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
95 lines
3.3 KiB
95 lines
3.3 KiB
4 months ago
|
/*
|
||
|
* Copyright (C) 2018 The Android Open Source Project
|
||
|
*
|
||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
* you may not use this file except in compliance with the License.
|
||
|
* You may obtain a copy of the License at
|
||
|
*
|
||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
* See the License for the specific language governing permissions and
|
||
|
* limitations under the License.
|
||
|
*/
|
||
|
|
||
|
#include "utils/tflite/blacklist.h"
|
||
|
|
||
|
#include "utils/tflite/blacklist_base.h"
|
||
|
#include "utils/tflite/skipgram_finder.h"
|
||
|
#include "flatbuffers/flexbuffers.h"
|
||
|
|
||
|
namespace tflite {
|
||
|
namespace ops {
|
||
|
namespace custom {
|
||
|
|
||
|
namespace libtextclassifier3 {
|
||
|
namespace blacklist {
|
||
|
|
||
|
// Generates prediction vectors for input strings using a skipgram blacklist.
|
||
|
// This uses the framework in `blacklist_base.h`, with the implementation detail
|
||
|
// that the input is a string tensor of messages and the terms are skipgrams.
|
||
|
class BlacklistOp : public BlacklistOpBase {
|
||
|
public:
|
||
|
explicit BlacklistOp(const flexbuffers::Map& custom_options)
|
||
|
: BlacklistOpBase(custom_options),
|
||
|
skipgram_finder_(custom_options["max_skip_size"].AsInt32()),
|
||
|
input_(nullptr) {
|
||
|
auto blacklist = custom_options["blacklist"].AsTypedVector();
|
||
|
auto blacklist_category =
|
||
|
custom_options["blacklist_category"].AsTypedVector();
|
||
|
for (int i = 0; i < blacklist.size(); i++) {
|
||
|
int category = blacklist_category[i].AsInt32();
|
||
|
flexbuffers::String s = blacklist[i].AsString();
|
||
|
skipgram_finder_.AddSkipgram(std::string(s.c_str(), s.length()),
|
||
|
category);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
TfLiteStatus InitializeInput(TfLiteContext* context,
|
||
|
TfLiteNode* node) override {
|
||
|
input_ = &context->tensors[node->inputs->data[kInputMessage]];
|
||
|
return kTfLiteOk;
|
||
|
}
|
||
|
|
||
|
absl::flat_hash_set<int> GetCategories(int i) const override {
|
||
|
StringRef input = GetString(input_, i);
|
||
|
return skipgram_finder_.FindSkipgrams(std::string(input.str, input.len));
|
||
|
}
|
||
|
|
||
|
void FinalizeInput() override { input_ = nullptr; }
|
||
|
|
||
|
TfLiteIntArray* GetInputShape(TfLiteContext* context,
|
||
|
TfLiteNode* node) override {
|
||
|
return context->tensors[node->inputs->data[kInputMessage]].dims;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
::libtextclassifier3::SkipgramFinder skipgram_finder_;
|
||
|
TfLiteTensor* input_;
|
||
|
|
||
|
static constexpr int kInputMessage = 0;
|
||
|
};
|
||
|
|
||
|
void* BlacklistOpInit(TfLiteContext* context, const char* buffer,
|
||
|
size_t length) {
|
||
|
const uint8_t* buffer_t = reinterpret_cast<const uint8_t*>(buffer);
|
||
|
return new BlacklistOp(flexbuffers::GetRoot(buffer_t, length).AsMap());
|
||
|
}
|
||
|
|
||
|
} // namespace blacklist
|
||
|
|
||
|
TfLiteRegistration* Register_BLACKLIST() {
|
||
|
static TfLiteRegistration r = {libtextclassifier3::blacklist::BlacklistOpInit,
|
||
|
libtextclassifier3::blacklist::Free,
|
||
|
libtextclassifier3::blacklist::Resize,
|
||
|
libtextclassifier3::blacklist::Eval};
|
||
|
return &r;
|
||
|
}
|
||
|
|
||
|
} // namespace libtextclassifier3
|
||
|
} // namespace custom
|
||
|
} // namespace ops
|
||
|
} // namespace tflite
|