You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
251 lines
9.4 KiB
251 lines
9.4 KiB
4 months ago
|
# Copyright (c) 2010 Python Software Foundation. All Rights Reserved.
|
||
|
# Adapted from Python's Lib/test/test_strtod.py (by Mark Dickinson)
|
||
|
|
||
|
# More test cases for deccheck.py.
|
||
|
|
||
|
import random
|
||
|
|
||
|
TEST_SIZE = 2
|
||
|
|
||
|
|
||
|
def test_short_halfway_cases():
|
||
|
# exact halfway cases with a small number of significant digits
|
||
|
for k in 0, 5, 10, 15, 20:
|
||
|
# upper = smallest integer >= 2**54/5**k
|
||
|
upper = -(-2**54//5**k)
|
||
|
# lower = smallest odd number >= 2**53/5**k
|
||
|
lower = -(-2**53//5**k)
|
||
|
if lower % 2 == 0:
|
||
|
lower += 1
|
||
|
for i in range(10 * TEST_SIZE):
|
||
|
# Select a random odd n in [2**53/5**k,
|
||
|
# 2**54/5**k). Then n * 10**k gives a halfway case
|
||
|
# with small number of significant digits.
|
||
|
n, e = random.randrange(lower, upper, 2), k
|
||
|
|
||
|
# Remove any additional powers of 5.
|
||
|
while n % 5 == 0:
|
||
|
n, e = n // 5, e + 1
|
||
|
assert n % 10 in (1, 3, 7, 9)
|
||
|
|
||
|
# Try numbers of the form n * 2**p2 * 10**e, p2 >= 0,
|
||
|
# until n * 2**p2 has more than 20 significant digits.
|
||
|
digits, exponent = n, e
|
||
|
while digits < 10**20:
|
||
|
s = '{}e{}'.format(digits, exponent)
|
||
|
yield s
|
||
|
# Same again, but with extra trailing zeros.
|
||
|
s = '{}e{}'.format(digits * 10**40, exponent - 40)
|
||
|
yield s
|
||
|
digits *= 2
|
||
|
|
||
|
# Try numbers of the form n * 5**p2 * 10**(e - p5), p5
|
||
|
# >= 0, with n * 5**p5 < 10**20.
|
||
|
digits, exponent = n, e
|
||
|
while digits < 10**20:
|
||
|
s = '{}e{}'.format(digits, exponent)
|
||
|
yield s
|
||
|
# Same again, but with extra trailing zeros.
|
||
|
s = '{}e{}'.format(digits * 10**40, exponent - 40)
|
||
|
yield s
|
||
|
digits *= 5
|
||
|
exponent -= 1
|
||
|
|
||
|
def test_halfway_cases():
|
||
|
# test halfway cases for the round-half-to-even rule
|
||
|
for i in range(1000):
|
||
|
for j in range(TEST_SIZE):
|
||
|
# bit pattern for a random finite positive (or +0.0) float
|
||
|
bits = random.randrange(2047*2**52)
|
||
|
|
||
|
# convert bit pattern to a number of the form m * 2**e
|
||
|
e, m = divmod(bits, 2**52)
|
||
|
if e:
|
||
|
m, e = m + 2**52, e - 1
|
||
|
e -= 1074
|
||
|
|
||
|
# add 0.5 ulps
|
||
|
m, e = 2*m + 1, e - 1
|
||
|
|
||
|
# convert to a decimal string
|
||
|
if e >= 0:
|
||
|
digits = m << e
|
||
|
exponent = 0
|
||
|
else:
|
||
|
# m * 2**e = (m * 5**-e) * 10**e
|
||
|
digits = m * 5**-e
|
||
|
exponent = e
|
||
|
s = '{}e{}'.format(digits, exponent)
|
||
|
yield s
|
||
|
|
||
|
def test_boundaries():
|
||
|
# boundaries expressed as triples (n, e, u), where
|
||
|
# n*10**e is an approximation to the boundary value and
|
||
|
# u*10**e is 1ulp
|
||
|
boundaries = [
|
||
|
(10000000000000000000, -19, 1110), # a power of 2 boundary (1.0)
|
||
|
(17976931348623159077, 289, 1995), # overflow boundary (2.**1024)
|
||
|
(22250738585072013831, -327, 4941), # normal/subnormal (2.**-1022)
|
||
|
(0, -327, 4941), # zero
|
||
|
]
|
||
|
for n, e, u in boundaries:
|
||
|
for j in range(1000):
|
||
|
for i in range(TEST_SIZE):
|
||
|
digits = n + random.randrange(-3*u, 3*u)
|
||
|
exponent = e
|
||
|
s = '{}e{}'.format(digits, exponent)
|
||
|
yield s
|
||
|
n *= 10
|
||
|
u *= 10
|
||
|
e -= 1
|
||
|
|
||
|
def test_underflow_boundary():
|
||
|
# test values close to 2**-1075, the underflow boundary; similar
|
||
|
# to boundary_tests, except that the random error doesn't scale
|
||
|
# with n
|
||
|
for exponent in range(-400, -320):
|
||
|
base = 10**-exponent // 2**1075
|
||
|
for j in range(TEST_SIZE):
|
||
|
digits = base + random.randrange(-1000, 1000)
|
||
|
s = '{}e{}'.format(digits, exponent)
|
||
|
yield s
|
||
|
|
||
|
def test_bigcomp():
|
||
|
for ndigs in 5, 10, 14, 15, 16, 17, 18, 19, 20, 40, 41, 50:
|
||
|
dig10 = 10**ndigs
|
||
|
for i in range(100 * TEST_SIZE):
|
||
|
digits = random.randrange(dig10)
|
||
|
exponent = random.randrange(-400, 400)
|
||
|
s = '{}e{}'.format(digits, exponent)
|
||
|
yield s
|
||
|
|
||
|
def test_parsing():
|
||
|
# make '0' more likely to be chosen than other digits
|
||
|
digits = '000000123456789'
|
||
|
signs = ('+', '-', '')
|
||
|
|
||
|
# put together random short valid strings
|
||
|
# \d*[.\d*]?e
|
||
|
for i in range(1000):
|
||
|
for j in range(TEST_SIZE):
|
||
|
s = random.choice(signs)
|
||
|
intpart_len = random.randrange(5)
|
||
|
s += ''.join(random.choice(digits) for _ in range(intpart_len))
|
||
|
if random.choice([True, False]):
|
||
|
s += '.'
|
||
|
fracpart_len = random.randrange(5)
|
||
|
s += ''.join(random.choice(digits)
|
||
|
for _ in range(fracpart_len))
|
||
|
else:
|
||
|
fracpart_len = 0
|
||
|
if random.choice([True, False]):
|
||
|
s += random.choice(['e', 'E'])
|
||
|
s += random.choice(signs)
|
||
|
exponent_len = random.randrange(1, 4)
|
||
|
s += ''.join(random.choice(digits)
|
||
|
for _ in range(exponent_len))
|
||
|
|
||
|
if intpart_len + fracpart_len:
|
||
|
yield s
|
||
|
|
||
|
test_particular = [
|
||
|
# squares
|
||
|
'1.00000000100000000025',
|
||
|
'1.0000000000000000000000000100000000000000000000000' #...
|
||
|
'00025',
|
||
|
'1.0000000000000000000000000000000000000000000010000' #...
|
||
|
'0000000000000000000000000000000000000000025',
|
||
|
'1.0000000000000000000000000000000000000000000000000' #...
|
||
|
'000001000000000000000000000000000000000000000000000' #...
|
||
|
'000000000025',
|
||
|
'0.99999999900000000025',
|
||
|
'0.9999999999999999999999999999999999999999999999999' #...
|
||
|
'999000000000000000000000000000000000000000000000000' #...
|
||
|
'000025',
|
||
|
'0.9999999999999999999999999999999999999999999999999' #...
|
||
|
'999999999999999999999999999999999999999999999999999' #...
|
||
|
'999999999999999999999999999999999999999990000000000' #...
|
||
|
'000000000000000000000000000000000000000000000000000' #...
|
||
|
'000000000000000000000000000000000000000000000000000' #...
|
||
|
'0000000000000000000000000000025',
|
||
|
|
||
|
'1.0000000000000000000000000000000000000000000000000' #...
|
||
|
'000000000000000000000000000000000000000000000000000' #...
|
||
|
'100000000000000000000000000000000000000000000000000' #...
|
||
|
'000000000000000000000000000000000000000000000000001',
|
||
|
'1.0000000000000000000000000000000000000000000000000' #...
|
||
|
'000000000000000000000000000000000000000000000000000' #...
|
||
|
'500000000000000000000000000000000000000000000000000' #...
|
||
|
'000000000000000000000000000000000000000000000000005',
|
||
|
'1.0000000000000000000000000000000000000000000000000' #...
|
||
|
'000000000100000000000000000000000000000000000000000' #...
|
||
|
'000000000000000000250000000000000002000000000000000' #...
|
||
|
'000000000000000000000000000000000000000000010000000' #...
|
||
|
'000000000000000000000000000000000000000000000000000' #...
|
||
|
'0000000000000000001',
|
||
|
'1.0000000000000000000000000000000000000000000000000' #...
|
||
|
'000000000100000000000000000000000000000000000000000' #...
|
||
|
'000000000000000000249999999999999999999999999999999' #...
|
||
|
'999999999999979999999999999999999999999999999999999' #...
|
||
|
'999999999999999999999900000000000000000000000000000' #...
|
||
|
'000000000000000000000000000000000000000000000000000' #...
|
||
|
'00000000000000000000000001',
|
||
|
|
||
|
'0.9999999999999999999999999999999999999999999999999' #...
|
||
|
'999999999900000000000000000000000000000000000000000' #...
|
||
|
'000000000000000000249999999999999998000000000000000' #...
|
||
|
'000000000000000000000000000000000000000000010000000' #...
|
||
|
'000000000000000000000000000000000000000000000000000' #...
|
||
|
'0000000000000000001',
|
||
|
'0.9999999999999999999999999999999999999999999999999' #...
|
||
|
'999999999900000000000000000000000000000000000000000' #...
|
||
|
'000000000000000000250000001999999999999999999999999' #...
|
||
|
'999999999999999999999999999999999990000000000000000' #...
|
||
|
'000000000000000000000000000000000000000000000000000' #...
|
||
|
'1',
|
||
|
|
||
|
# tough cases for ln etc.
|
||
|
'1.000000000000000000000000000000000000000000000000' #...
|
||
|
'00000000000000000000000000000000000000000000000000' #...
|
||
|
'00100000000000000000000000000000000000000000000000' #...
|
||
|
'00000000000000000000000000000000000000000000000000' #...
|
||
|
'0001',
|
||
|
'0.999999999999999999999999999999999999999999999999' #...
|
||
|
'99999999999999999999999999999999999999999999999999' #...
|
||
|
'99899999999999999999999999999999999999999999999999' #...
|
||
|
'99999999999999999999999999999999999999999999999999' #...
|
||
|
'99999999999999999999999999999999999999999999999999' #...
|
||
|
'9999'
|
||
|
]
|
||
|
|
||
|
|
||
|
TESTCASES = [
|
||
|
[x for x in test_short_halfway_cases()],
|
||
|
[x for x in test_halfway_cases()],
|
||
|
[x for x in test_boundaries()],
|
||
|
[x for x in test_underflow_boundary()],
|
||
|
[x for x in test_bigcomp()],
|
||
|
[x for x in test_parsing()],
|
||
|
test_particular
|
||
|
]
|
||
|
|
||
|
def un_randfloat():
|
||
|
for i in range(1000):
|
||
|
l = random.choice(TESTCASES[:6])
|
||
|
yield random.choice(l)
|
||
|
for v in test_particular:
|
||
|
yield v
|
||
|
|
||
|
def bin_randfloat():
|
||
|
for i in range(1000):
|
||
|
l1 = random.choice(TESTCASES)
|
||
|
l2 = random.choice(TESTCASES)
|
||
|
yield random.choice(l1), random.choice(l2)
|
||
|
|
||
|
def tern_randfloat():
|
||
|
for i in range(1000):
|
||
|
l1 = random.choice(TESTCASES)
|
||
|
l2 = random.choice(TESTCASES)
|
||
|
l3 = random.choice(TESTCASES)
|
||
|
yield random.choice(l1), random.choice(l2), random.choice(l3)
|