You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
104 lines
3.7 KiB
104 lines
3.7 KiB
4 months ago
|
/*
|
||
|
* Copyright (C) 2018 The Android Open Source Project
|
||
|
*
|
||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
* you may not use this file except in compliance with the License.
|
||
|
* You may obtain a copy of the License at
|
||
|
*
|
||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
* See the License for the specific language governing permissions and
|
||
|
* limitations under the License.
|
||
|
*/
|
||
|
|
||
|
#define LOG_TAG "Operations"
|
||
|
|
||
|
#include "Cast.h"
|
||
|
|
||
|
#include <algorithm>
|
||
|
|
||
|
#include "Operations.h"
|
||
|
#include "Tracing.h"
|
||
|
|
||
|
namespace android {
|
||
|
namespace nn {
|
||
|
namespace cast {
|
||
|
|
||
|
namespace {
|
||
|
|
||
|
template <typename FromT, typename ToT>
|
||
|
void copyCast(const FromT* in, ToT* out, int numElements) {
|
||
|
std::transform(in, in + numElements, out, [](FromT a) -> ToT {
|
||
|
if constexpr (std::is_same_v<ToT, uint8_t>) {
|
||
|
if (a < 0) return 0;
|
||
|
if (a > 255) return 255;
|
||
|
}
|
||
|
return static_cast<ToT>(a);
|
||
|
});
|
||
|
}
|
||
|
|
||
|
template <typename FromT>
|
||
|
bool copyToTensor(const FromT* inputData, int numElements, uint8_t* outputData,
|
||
|
const Shape& outputShape) {
|
||
|
#define ANDROID_NN_COPY_CAST(operandType, dataType) \
|
||
|
case operandType: { \
|
||
|
NNTRACE_COMP("cast::copyCast::" #dataType); \
|
||
|
copyCast(inputData, reinterpret_cast<dataType*>(outputData), numElements); \
|
||
|
return true; \
|
||
|
}
|
||
|
|
||
|
switch (outputShape.type) {
|
||
|
ANDROID_NN_COPY_CAST(OperandType::TENSOR_FLOAT16, _Float16);
|
||
|
ANDROID_NN_COPY_CAST(OperandType::TENSOR_FLOAT32, float);
|
||
|
ANDROID_NN_COPY_CAST(OperandType::TENSOR_INT32, int32_t);
|
||
|
ANDROID_NN_COPY_CAST(OperandType::TENSOR_QUANT8_ASYMM, uint8_t);
|
||
|
default:
|
||
|
LOG(ERROR) << "Unsupported CAST output type";
|
||
|
return false;
|
||
|
}
|
||
|
#undef ANDROID_NN_COPY_CAST
|
||
|
}
|
||
|
|
||
|
} // namespace
|
||
|
|
||
|
bool prepare(const Shape& input, Shape* output) {
|
||
|
output->dimensions = input.dimensions;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
bool eval(const uint8_t* inputData, const Shape& inputShape, uint8_t* outputData,
|
||
|
const Shape& outputShape) {
|
||
|
NNTRACE_TRANS("cast::eval");
|
||
|
int numElements = getNumberOfElements(inputShape);
|
||
|
|
||
|
#define ANDROID_NN_COPY_TO_TENSOR(operandType, dataType) \
|
||
|
case operandType: { \
|
||
|
NNTRACE_TRANS("cast::copyToTensor::" #dataType); \
|
||
|
copyToTensor(reinterpret_cast<const dataType*>(inputData), numElements, outputData, \
|
||
|
outputShape); \
|
||
|
return true; \
|
||
|
}
|
||
|
|
||
|
switch (inputShape.type) {
|
||
|
ANDROID_NN_COPY_TO_TENSOR(OperandType::TENSOR_FLOAT16, _Float16);
|
||
|
ANDROID_NN_COPY_TO_TENSOR(OperandType::TENSOR_FLOAT32, float);
|
||
|
ANDROID_NN_COPY_TO_TENSOR(OperandType::TENSOR_INT32, int32_t);
|
||
|
ANDROID_NN_COPY_TO_TENSOR(OperandType::TENSOR_QUANT8_ASYMM, uint8_t);
|
||
|
default:
|
||
|
if (inputShape.type == outputShape.type) {
|
||
|
return copyData(inputData, inputShape, outputData, outputShape);
|
||
|
} else {
|
||
|
LOG(ERROR) << "Unsupported CAST input type";
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
#undef ANDROID_NN_COPY_TO_TENSOR
|
||
|
}
|
||
|
|
||
|
} // namespace cast
|
||
|
} // namespace nn
|
||
|
} // namespace android
|