You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

191 lines
6.6 KiB

/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <audio_utils/Balance.h>
namespace android::audio_utils {
void Balance::setChannelMask(audio_channel_mask_t channelMask)
{
using namespace ::android::audio_utils::channels;
channelMask = static_cast<audio_channel_mask_t>(channelMask & ~AUDIO_CHANNEL_HAPTIC_ALL);
if (!audio_is_output_channel(channelMask) // invalid mask
|| mChannelMask == channelMask) { // no need to do anything
return;
}
mChannelMask = channelMask;
mChannelCount = audio_channel_count_from_out_mask(channelMask);
// save mBalance into balance for later restoring, then reset
const float balance = mBalance;
mBalance = 0.f;
// reset mVolumes
mVolumes.resize(mChannelCount);
std::fill(mVolumes.begin(), mVolumes.end(), 1.f);
// reset ramping variables
mRampBalance = 0.f;
mRampVolumes.clear();
if (audio_channel_mask_get_representation(mChannelMask)
== AUDIO_CHANNEL_REPRESENTATION_INDEX) {
mSides.clear(); // mSides unused for channel index masks.
setBalance(balance); // recompute balance
return;
}
mSides.resize(mChannelCount);
// If LFE and LFE2 both exist, it should be L and R in 22.2
int lfe = -1;
int lfe2 = -1;
constexpr unsigned LFE_CHANNEL_INDEX = 3;
constexpr unsigned LFE2_CHANNEL_INDEX = 23;
for (unsigned i = 0, channel = channelMask; channel != 0; ++i) {
const int index = __builtin_ctz(channel);
mSides[i] = sideFromChannelIdx(index);
// Keep track of LFE indices
if (index == LFE_CHANNEL_INDEX) {
lfe = i;
} else if (index == LFE2_CHANNEL_INDEX) {
lfe2 = i;
}
channel &= ~(1 << index);
}
if (lfe >= 0 && lfe2 >= 0) { // if both LFEs exist assign to L and R.
mSides[lfe] = AUDIO_GEOMETRY_SIDE_LEFT;
mSides[lfe2] = AUDIO_GEOMETRY_SIDE_RIGHT;
}
setBalance(balance); // recompute balance
}
void Balance::process(float *buffer, size_t frames)
{
if (mBalance == 0.f || mChannelCount < 2) {
return;
}
if (mRamp) {
if (mRampVolumes.size() != mVolumes.size()) {
// If mRampVolumes is empty, we do not ramp in this process() but directly
// apply the existing mVolumes. We save the balance and volume state here
// and fall through to non-ramping code below. The next process() will ramp if needed.
mRampBalance = mBalance;
mRampVolumes = mVolumes;
} else if (mRampBalance != mBalance) {
if (frames > 0) {
std::vector<float> mDeltas(mVolumes.size());
const float r = 1.f / frames;
for (size_t j = 0; j < mChannelCount; ++j) {
mDeltas[j] = (mVolumes[j] - mRampVolumes[j]) * r;
}
// ramped balance
for (size_t i = 0; i < frames; ++i) {
const float findex = i;
for (size_t j = 0; j < mChannelCount; ++j) { // better precision: delta * i
*buffer++ *= mRampVolumes[j] + mDeltas[j] * findex;
}
}
}
mRampBalance = mBalance;
mRampVolumes = mVolumes;
return;
}
// fall through
}
// non-ramped balance
for (size_t i = 0; i < frames; ++i) {
for (size_t j = 0; j < mChannelCount; ++j) {
*buffer++ *= mVolumes[j];
}
}
}
void Balance::computeStereoBalance(float balance, float *left, float *right) const
{
if (balance > 0.f) {
*left = mCurve(1.f - balance);
*right = 1.f;
} else if (balance < 0.f) {
*left = 1.f;
*right = mCurve(1.f + balance);
} else {
*left = 1.f;
*right = 1.f;
}
// Functionally:
// *left = balance > 0.f ? mCurve(1.f - balance) : 1.f;
// *right = balance < 0.f ? mCurve(1.f + balance) : 1.f;
}
std::string Balance::toString() const
{
std::stringstream ss;
ss << "balance " << mBalance << " channelCount " << mChannelCount << " volumes:";
for (float volume : mVolumes) {
ss << " " << volume;
}
// we do not show mSides, which is only valid for channel position masks.
return ss.str();
}
void Balance::setBalance(float balance)
{
using namespace ::android::audio_utils::channels;
if (mBalance == balance // no change
|| isnan(balance) || fabs(balance) > 1.f) { // balance out of range
return;
}
mBalance = balance;
if (mChannelCount < 2) { // if channel count is 1, mVolumes[0] is already set to 1.f
return; // and if channel count < 2, we don't do anything in process().
}
// Handle the common cases:
// stereo and channel index masks only affect the first two channels as left and right.
if (mChannelMask == AUDIO_CHANNEL_OUT_STEREO
|| audio_channel_mask_get_representation(mChannelMask)
== AUDIO_CHANNEL_REPRESENTATION_INDEX) {
computeStereoBalance(balance, &mVolumes[0], &mVolumes[1]);
return;
}
// For position masks with more than 2 channels, we consider which side the
// speaker position is on to figure the volume used.
float balanceVolumes[3]; // left, right, center (we don't care the order)
static_assert(AUDIO_GEOMETRY_SIDE_LEFT >= 0
&& AUDIO_GEOMETRY_SIDE_LEFT <= std::size(balanceVolumes));
static_assert(AUDIO_GEOMETRY_SIDE_RIGHT >= 0
&& AUDIO_GEOMETRY_SIDE_RIGHT <= std::size(balanceVolumes));
static_assert(AUDIO_GEOMETRY_SIDE_CENTER >= 0
&& AUDIO_GEOMETRY_SIDE_CENTER <= std::size(balanceVolumes));
computeStereoBalance(balance, &balanceVolumes[AUDIO_GEOMETRY_SIDE_LEFT],
&balanceVolumes[AUDIO_GEOMETRY_SIDE_RIGHT]);
balanceVolumes[AUDIO_GEOMETRY_SIDE_CENTER] = 1.f; // center TODO: consider center scaling.
for (size_t i = 0; i < mVolumes.size(); ++i) {
mVolumes[i] = balanceVolumes[mSides[i]];
}
}
} // namespace android::audio_utils