You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

311 lines
12 KiB

//===- MappedBlockStream.cpp - Reads stream data from a PDBFile -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/DebugInfo/PDB/Raw/MappedBlockStream.h"
#include "llvm/DebugInfo/PDB/Raw/DirectoryStreamData.h"
#include "llvm/DebugInfo/PDB/Raw/IPDBStreamData.h"
#include "llvm/DebugInfo/PDB/Raw/IndexedStreamData.h"
#include "llvm/DebugInfo/PDB/Raw/PDBFile.h"
#include "llvm/DebugInfo/PDB/Raw/RawError.h"
using namespace llvm;
using namespace llvm::pdb;
namespace {
// This exists so that we can use make_unique while still keeping the
// constructor of MappedBlockStream private, forcing users to go through
// the `create` interface.
class MappedBlockStreamImpl : public MappedBlockStream {
public:
MappedBlockStreamImpl(std::unique_ptr<IPDBStreamData> Data,
const IPDBFile &File)
: MappedBlockStream(std::move(Data), File) {}
};
}
typedef std::pair<uint32_t, uint32_t> Interval;
static Interval intersect(const Interval &I1, const Interval &I2) {
return std::make_pair(std::max(I1.first, I2.first),
std::min(I1.second, I2.second));
}
MappedBlockStream::MappedBlockStream(std::unique_ptr<IPDBStreamData> Data,
const IPDBFile &Pdb)
: Pdb(Pdb), Data(std::move(Data)) {}
Error MappedBlockStream::readBytes(uint32_t Offset, uint32_t Size,
ArrayRef<uint8_t> &Buffer) const {
// Make sure we aren't trying to read beyond the end of the stream.
if (Size > Data->getLength())
return make_error<RawError>(raw_error_code::insufficient_buffer);
if (Offset > Data->getLength() - Size)
return make_error<RawError>(raw_error_code::insufficient_buffer);
if (tryReadContiguously(Offset, Size, Buffer))
return Error::success();
auto CacheIter = CacheMap.find(Offset);
if (CacheIter != CacheMap.end()) {
// Try to find an alloc that was large enough for this request.
for (auto &Entry : CacheIter->second) {
if (Entry.size() >= Size) {
Buffer = Entry.slice(0, Size);
return Error::success();
}
}
}
// We couldn't find a buffer that started at the correct offset (the most
// common scenario). Try to see if there is a buffer that starts at some
// other offset but overlaps the desired range.
for (auto &CacheItem : CacheMap) {
Interval RequestExtent = std::make_pair(Offset, Offset + Size);
// We already checked this one on the fast path above.
if (CacheItem.first == Offset)
continue;
// If the initial extent of the cached item is beyond the ending extent
// of the request, there is no overlap.
if (CacheItem.first >= Offset + Size)
continue;
// We really only have to check the last item in the list, since we append
// in order of increasing length.
if (CacheItem.second.empty())
continue;
auto CachedAlloc = CacheItem.second.back();
// If the initial extent of the request is beyond the ending extent of
// the cached item, there is no overlap.
Interval CachedExtent =
std::make_pair(CacheItem.first, CacheItem.first + CachedAlloc.size());
if (RequestExtent.first >= CachedExtent.first + CachedExtent.second)
continue;
Interval Intersection = intersect(CachedExtent, RequestExtent);
// Only use this if the entire request extent is contained in the cached
// extent.
if (Intersection != RequestExtent)
continue;
uint32_t CacheRangeOffset =
AbsoluteDifference(CachedExtent.first, Intersection.first);
Buffer = CachedAlloc.slice(CacheRangeOffset, Size);
return Error::success();
}
// Otherwise allocate a large enough buffer in the pool, memcpy the data
// into it, and return an ArrayRef to that. Do not touch existing pool
// allocations, as existing clients may be holding a pointer which must
// not be invalidated.
uint8_t *WriteBuffer = static_cast<uint8_t *>(Pool.Allocate(Size, 8));
if (auto EC = readBytes(Offset, MutableArrayRef<uint8_t>(WriteBuffer, Size)))
return EC;
if (CacheIter != CacheMap.end()) {
CacheIter->second.emplace_back(WriteBuffer, Size);
} else {
std::vector<CacheEntry> List;
List.emplace_back(WriteBuffer, Size);
CacheMap.insert(std::make_pair(Offset, List));
}
Buffer = ArrayRef<uint8_t>(WriteBuffer, Size);
return Error::success();
}
Error MappedBlockStream::readLongestContiguousChunk(
uint32_t Offset, ArrayRef<uint8_t> &Buffer) const {
// Make sure we aren't trying to read beyond the end of the stream.
if (Offset >= Data->getLength())
return make_error<RawError>(raw_error_code::insufficient_buffer);
uint32_t First = Offset / Pdb.getBlockSize();
uint32_t Last = First;
auto BlockList = Data->getStreamBlocks();
while (Last < Pdb.getBlockCount() - 1) {
if (BlockList[Last] != BlockList[Last + 1] - 1)
break;
++Last;
}
uint32_t OffsetInFirstBlock = Offset % Pdb.getBlockSize();
uint32_t BytesFromFirstBlock = Pdb.getBlockSize() - OffsetInFirstBlock;
uint32_t BlockSpan = Last - First + 1;
uint32_t ByteSpan =
BytesFromFirstBlock + (BlockSpan - 1) * Pdb.getBlockSize();
auto Result = Pdb.getBlockData(BlockList[First], Pdb.getBlockSize());
if (!Result)
return Result.takeError();
Buffer = Result->drop_front(OffsetInFirstBlock);
Buffer = ArrayRef<uint8_t>(Buffer.data(), ByteSpan);
return Error::success();
}
uint32_t MappedBlockStream::getLength() const { return Data->getLength(); }
Error MappedBlockStream::commit() const { return Error::success(); }
bool MappedBlockStream::tryReadContiguously(uint32_t Offset, uint32_t Size,
ArrayRef<uint8_t> &Buffer) const {
// Attempt to fulfill the request with a reference directly into the stream.
// This can work even if the request crosses a block boundary, provided that
// all subsequent blocks are contiguous. For example, a 10k read with a 4k
// block size can be filled with a reference if, from the starting offset,
// 3 blocks in a row are contiguous.
uint32_t BlockNum = Offset / Pdb.getBlockSize();
uint32_t OffsetInBlock = Offset % Pdb.getBlockSize();
uint32_t BytesFromFirstBlock =
std::min(Size, Pdb.getBlockSize() - OffsetInBlock);
uint32_t NumAdditionalBlocks =
llvm::alignTo(Size - BytesFromFirstBlock, Pdb.getBlockSize()) /
Pdb.getBlockSize();
auto BlockList = Data->getStreamBlocks();
uint32_t RequiredContiguousBlocks = NumAdditionalBlocks + 1;
uint32_t E = BlockList[BlockNum];
for (uint32_t I = 0; I < RequiredContiguousBlocks; ++I, ++E) {
if (BlockList[I + BlockNum] != E)
return false;
}
uint32_t FirstBlockAddr = BlockList[BlockNum];
auto Result = Pdb.getBlockData(FirstBlockAddr, Pdb.getBlockSize());
if (!Result) {
consumeError(Result.takeError());
return false;
}
auto Data = Result->drop_front(OffsetInBlock);
Buffer = ArrayRef<uint8_t>(Data.data(), Size);
return true;
}
Error MappedBlockStream::readBytes(uint32_t Offset,
MutableArrayRef<uint8_t> Buffer) const {
uint32_t BlockNum = Offset / Pdb.getBlockSize();
uint32_t OffsetInBlock = Offset % Pdb.getBlockSize();
// Make sure we aren't trying to read beyond the end of the stream.
if (Buffer.size() > Data->getLength())
return make_error<RawError>(raw_error_code::insufficient_buffer);
if (Offset > Data->getLength() - Buffer.size())
return make_error<RawError>(raw_error_code::insufficient_buffer);
uint32_t BytesLeft = Buffer.size();
uint32_t BytesWritten = 0;
uint8_t *WriteBuffer = Buffer.data();
auto BlockList = Data->getStreamBlocks();
while (BytesLeft > 0) {
uint32_t StreamBlockAddr = BlockList[BlockNum];
auto Result = Pdb.getBlockData(StreamBlockAddr, Pdb.getBlockSize());
if (!Result)
return Result.takeError();
auto Data = *Result;
const uint8_t *ChunkStart = Data.data() + OffsetInBlock;
uint32_t BytesInChunk =
std::min(BytesLeft, Pdb.getBlockSize() - OffsetInBlock);
::memcpy(WriteBuffer + BytesWritten, ChunkStart, BytesInChunk);
BytesWritten += BytesInChunk;
BytesLeft -= BytesInChunk;
++BlockNum;
OffsetInBlock = 0;
}
return Error::success();
}
Error MappedBlockStream::writeBytes(uint32_t Offset,
ArrayRef<uint8_t> Buffer) const {
// Make sure we aren't trying to write beyond the end of the stream.
if (Buffer.size() > Data->getLength())
return make_error<RawError>(raw_error_code::insufficient_buffer);
if (Offset > Data->getLength() - Buffer.size())
return make_error<RawError>(raw_error_code::insufficient_buffer);
uint32_t BlockNum = Offset / Pdb.getBlockSize();
uint32_t OffsetInBlock = Offset % Pdb.getBlockSize();
uint32_t BytesLeft = Buffer.size();
auto BlockList = Data->getStreamBlocks();
uint32_t BytesWritten = 0;
while (BytesLeft > 0) {
uint32_t StreamBlockAddr = BlockList[BlockNum];
uint32_t BytesToWriteInChunk =
std::min(BytesLeft, Pdb.getBlockSize() - OffsetInBlock);
const uint8_t *Chunk = Buffer.data() + BytesWritten;
ArrayRef<uint8_t> ChunkData(Chunk, BytesToWriteInChunk);
if (auto EC = Pdb.setBlockData(StreamBlockAddr, OffsetInBlock, ChunkData))
return EC;
BytesLeft -= BytesToWriteInChunk;
BytesWritten += BytesToWriteInChunk;
++BlockNum;
OffsetInBlock = 0;
}
// If this write overlapped a read which previously came from the pool,
// someone may still be holding a pointer to that alloc which is now invalid.
// Compute the overlapping range and update the cache entry, so any
// outstanding buffers are automatically updated.
for (const auto &MapEntry : CacheMap) {
// If the end of the written extent precedes the beginning of the cached
// extent, ignore this map entry.
if (Offset + BytesWritten < MapEntry.first)
continue;
for (const auto &Alloc : MapEntry.second) {
// If the end of the cached extent precedes the beginning of the written
// extent, ignore this alloc.
if (MapEntry.first + Alloc.size() < Offset)
continue;
// If we get here, they are guaranteed to overlap.
Interval WriteInterval = std::make_pair(Offset, Offset + BytesWritten);
Interval CachedInterval =
std::make_pair(MapEntry.first, MapEntry.first + Alloc.size());
// If they overlap, we need to write the new data into the overlapping
// range.
auto Intersection = intersect(WriteInterval, CachedInterval);
assert(Intersection.first <= Intersection.second);
uint32_t Length = Intersection.second - Intersection.first;
uint32_t SrcOffset =
AbsoluteDifference(WriteInterval.first, Intersection.first);
uint32_t DestOffset =
AbsoluteDifference(CachedInterval.first, Intersection.first);
::memcpy(Alloc.data() + DestOffset, Buffer.data() + SrcOffset, Length);
}
}
return Error::success();
}
uint32_t MappedBlockStream::getNumBytesCopied() const {
return static_cast<uint32_t>(Pool.getBytesAllocated());
}
Expected<std::unique_ptr<MappedBlockStream>>
MappedBlockStream::createIndexedStream(uint32_t StreamIdx,
const IPDBFile &File) {
if (StreamIdx >= File.getNumStreams())
return make_error<RawError>(raw_error_code::no_stream);
auto Data = llvm::make_unique<IndexedStreamData>(StreamIdx, File);
return llvm::make_unique<MappedBlockStreamImpl>(std::move(Data), File);
}
Expected<std::unique_ptr<MappedBlockStream>>
MappedBlockStream::createDirectoryStream(const PDBFile &File) {
auto Data = llvm::make_unique<DirectoryStreamData>(File);
return llvm::make_unique<MappedBlockStreamImpl>(std::move(Data), File);
}