You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
32 lines
826 B
32 lines
826 B
4 months ago
|
// polynomial for approximating cos(x)
|
||
|
//
|
||
|
// Copyright (c) 2019, Arm Limited.
|
||
|
// SPDX-License-Identifier: MIT
|
||
|
|
||
|
deg = 8; // polynomial degree
|
||
|
a = -pi/4; // interval
|
||
|
b = pi/4;
|
||
|
|
||
|
// find even polynomial with minimal abs error compared to cos(x)
|
||
|
|
||
|
f = cos(x);
|
||
|
|
||
|
// return p that minimizes |f(x) - poly(x) - x^d*p(x)|
|
||
|
approx = proc(poly,d) {
|
||
|
return remez(f(x)-poly(x), deg-d, [a;b], x^d, 1e-10);
|
||
|
};
|
||
|
|
||
|
// first coeff is fixed, iteratively find optimal double prec coeffs
|
||
|
poly = 1;
|
||
|
for i from 1 to deg/2 do {
|
||
|
p = roundcoefficients(approx(poly,2*i), [|D ...|]);
|
||
|
poly = poly + x^(2*i)*coeff(p,0);
|
||
|
};
|
||
|
|
||
|
display = hexadecimal;
|
||
|
print("rel error:", accurateinfnorm(1-poly(x)/f(x), [a;b], 30));
|
||
|
print("abs error:", accurateinfnorm(f(x)-poly(x), [a;b], 30));
|
||
|
print("in [",a,b,"]");
|
||
|
print("coeffs:");
|
||
|
for i from 0 to deg do coeff(poly,i);
|