/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_LIBARTBASE_BASE_STL_UTIL_H_ #define ART_LIBARTBASE_BASE_STL_UTIL_H_ #include #include #include #include #include #include "base/iteration_range.h" namespace art { // STLDeleteContainerPointers() // For a range within a container of pointers, calls delete // (non-array version) on these pointers. // NOTE: for these three functions, we could just implement a DeleteObject // functor and then call for_each() on the range and functor, but this // requires us to pull in all of algorithm.h, which seems expensive. // For hash_[multi]set, it is important that this deletes behind the iterator // because the hash_set may call the hash function on the iterator when it is // advanced, which could result in the hash function trying to deference a // stale pointer. template void STLDeleteContainerPointers(ForwardIterator begin, ForwardIterator end) { while (begin != end) { ForwardIterator temp = begin; ++begin; delete *temp; } } // STLDeleteElements() deletes all the elements in an STL container and clears // the container. This function is suitable for use with a vector, set, // hash_set, or any other STL container which defines sensible begin(), end(), // and clear() methods. // // If container is null, this function is a no-op. // // As an alternative to calling STLDeleteElements() directly, consider // using a container of std::unique_ptr, which ensures that your container's // elements are deleted when the container goes out of scope. template void STLDeleteElements(T *container) { if (container != nullptr) { STLDeleteContainerPointers(container->begin(), container->end()); container->clear(); } } // Given an STL container consisting of (key, value) pairs, STLDeleteValues // deletes all the "value" components and clears the container. Does nothing // in the case it's given a null pointer. template void STLDeleteValues(T *v) { if (v != nullptr) { for (typename T::iterator i = v->begin(); i != v->end(); ++i) { delete i->second; } v->clear(); } } // Deleter using free() for use with std::unique_ptr<>. See also UniqueCPtr<> below. struct FreeDelete { // NOTE: Deleting a const object is valid but free() takes a non-const pointer. void operator()(const void* ptr) const { free(const_cast(ptr)); } }; // Alias for std::unique_ptr<> that uses the C function free() to delete objects. template using UniqueCPtr = std::unique_ptr; // Find index of the first element with the specified value known to be in the container. template size_t IndexOfElement(const Container& container, const T& value) { auto it = std::find(container.begin(), container.end(), value); DCHECK(it != container.end()); // Must exist. return std::distance(container.begin(), it); } // Remove the first element with the specified value known to be in the container. template void RemoveElement(Container& container, const T& value) { auto it = std::find(container.begin(), container.end(), value); DCHECK(it != container.end()); // Must exist. container.erase(it); } // Replace the first element with the specified old_value known to be in the container. template void ReplaceElement(Container& container, const T& old_value, const T& new_value) { auto it = std::find(container.begin(), container.end(), old_value); DCHECK(it != container.end()); // Must exist. *it = new_value; } // Search for an element with the specified value and return true if it was found, false otherwise. template bool ContainsElement(const Container& container, const T& value, size_t start_pos = 0u) { DCHECK_LE(start_pos, container.size()); auto start = container.begin(); std::advance(start, start_pos); auto it = std::find(start, container.end(), value); return it != container.end(); } template bool ContainsElement(const std::set& container, const T& value) { return container.count(value) != 0u; } // 32-bit FNV-1a hash function suitable for std::unordered_map. // It can be used with any container which works with range-based for loop. // See http://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function template struct FNVHash { size_t operator()(const Vector& vector) const { uint32_t hash = 2166136261u; for (const auto& value : vector) { hash = (hash ^ value) * 16777619u; } return hash; } }; // Returns a copy of the passed vector that doesn't memory-own its entries. template static inline std::vector MakeNonOwningPointerVector(const std::vector>& src) { std::vector result; result.reserve(src.size()); for (const std::unique_ptr& t : src) { result.push_back(t.get()); } return result; } template class ZipLeftIter : public std::iterator< std::forward_iterator_tag, std::pair> { public: ZipLeftIter(IterLeft left, IterRight right) : left_iter_(left), right_iter_(right) {} ZipLeftIter& operator++() { ++left_iter_; ++right_iter_; return *this; } ZipLeftIter operator++(int) { ZipLeftIter ret(left_iter_, right_iter_); ++(*this); return ret; } bool operator==(const ZipLeftIter& other) const { return left_iter_ == other.left_iter_; } bool operator!=(const ZipLeftIter& other) const { return !(*this == other); } std::pair operator*() const { return std::make_pair(*left_iter_, *right_iter_); } private: IterLeft left_iter_; IterRight right_iter_; }; class CountIter : public std::iterator { public: CountIter() : count_(0) {} explicit CountIter(size_t count) : count_(count) {} CountIter& operator++() { ++count_; return *this; } CountIter operator++(int) { size_t ret = count_; ++count_; return CountIter(ret); } bool operator==(const CountIter& other) const { return count_ == other.count_; } bool operator!=(const CountIter& other) const { return !(*this == other); } size_t operator*() const { return count_; } private: size_t count_; }; // Make an iteration range that returns a pair of the element and the index of the element. template static inline IterationRange> ZipCount(IterationRange iter) { return IterationRange(ZipLeftIter(iter.begin(), CountIter(0)), ZipLeftIter(iter.end(), CountIter(-1))); } // Make an iteration range that returns a pair of the outputs of two iterators. Stops when the first // (left) one is exhausted. The left iterator must be at least as long as the right one. template static inline IterationRange> ZipLeft( IterationRange iter_left, IterationRange iter_right) { return IterationRange(ZipLeftIter(iter_left.begin(), iter_right.begin()), ZipLeftIter(iter_left.end(), iter_right.end())); } static inline IterationRange Range(size_t start, size_t end) { return IterationRange(CountIter(start), CountIter(end)); } static inline IterationRange Range(size_t end) { return Range(0, end); } template struct FilterIterator : public std::iterator { public: FilterIterator(RealIter rl, Filter cond, std::optional end = std::nullopt) : real_iter_(rl), cond_(cond), end_(end) { DCHECK(std::make_optional(rl) == end_ || cond_(*real_iter_)); } FilterIterator& operator++() { DCHECK(std::make_optional(real_iter_) != end_); do { if (std::make_optional(++real_iter_) == end_) { break; } } while (!cond_(*real_iter_)); return *this; } FilterIterator operator++(int) { FilterIterator ret(real_iter_, cond_, end_); ++(*this); return ret; } bool operator==(const FilterIterator& other) const { return real_iter_ == other.real_iter_; } bool operator!=(const FilterIterator& other) const { return !(*this == other); } typename RealIter::value_type operator*() const { return *real_iter_; } private: RealIter real_iter_; Filter cond_; std::optional end_; }; template static inline IterationRange> Filter( IterationRange it, Filter cond) { auto end = it.end(); auto start = std::find_if(it.begin(), end, cond); return MakeIterationRange(FilterIterator(start, cond, std::make_optional(end)), FilterIterator(end, cond, std::make_optional(end))); } template struct NonNullFilter { public: static_assert(std::is_pointer::value, "Must be pointer type!"); constexpr bool operator()(Val v) const { return v != nullptr; } }; template using FilterNull = FilterIterator>; template static inline IterationRange> FilterOutNull(IterationRange inner) { return Filter(inner, NonNullFilter()); } template struct SafePrinter { const Val* val_; }; template std::ostream& operator<<(std::ostream& os, const SafePrinter& v) { if (v.val_ == nullptr) { return os << "NULL"; } else { return os << *v.val_; } } template SafePrinter SafePrint(const Val* v) { return SafePrinter{v}; } // Helper struct for iterating a split-string without allocation. struct SplitStringIter : public std::iterator { public: // Direct iterator constructor. The iteration state is only the current index. // We use that with the split char and the full string to get the current and // next segment. SplitStringIter(size_t index, char split, std::string_view sv) : cur_index_(index), split_on_(split), sv_(sv) {} SplitStringIter(const SplitStringIter&) = default; SplitStringIter(SplitStringIter&&) = default; SplitStringIter& operator=(SplitStringIter&&) = default; SplitStringIter& operator=(const SplitStringIter&) = default; SplitStringIter& operator++() { size_t nxt = sv_.find(split_on_, cur_index_); if (nxt == std::string_view::npos) { cur_index_ = std::string_view::npos; } else { cur_index_ = nxt + 1; } return *this; } SplitStringIter operator++(int) { SplitStringIter ret(cur_index_, split_on_, sv_); ++(*this); return ret; } bool operator==(const SplitStringIter& other) const { return sv_ == other.sv_ && split_on_ == other.split_on_ && cur_index_== other.cur_index_; } bool operator!=(const SplitStringIter& other) const { return !(*this == other); } typename std::string_view operator*() const { return sv_.substr(cur_index_, sv_.substr(cur_index_).find(split_on_)); } private: size_t cur_index_; char split_on_; std::string_view sv_; }; // Create an iteration range over the string 'sv' split at each 'target' occurrence. // Eg: SplitString(":foo::bar") -> ["", "foo", "", "bar"] inline IterationRange SplitString(std::string_view sv, char target) { return MakeIterationRange(SplitStringIter(0, target, sv), SplitStringIter(std::string_view::npos, target, sv)); } } // namespace art #endif // ART_LIBARTBASE_BASE_STL_UTIL_H_