/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "thread_list.h" #include #include #include #include #include #include "android-base/stringprintf.h" #include "backtrace/BacktraceMap.h" #include "nativehelper/scoped_local_ref.h" #include "nativehelper/scoped_utf_chars.h" #include "base/aborting.h" #include "base/histogram-inl.h" #include "base/mutex-inl.h" #include "base/systrace.h" #include "base/time_utils.h" #include "base/timing_logger.h" #include "debugger.h" #include "gc/collector/concurrent_copying.h" #include "gc/gc_pause_listener.h" #include "gc/heap.h" #include "gc/reference_processor.h" #include "gc_root.h" #include "jni/jni_internal.h" #include "lock_word.h" #include "monitor.h" #include "native_stack_dump.h" #include "scoped_thread_state_change-inl.h" #include "thread.h" #include "trace.h" #include "well_known_classes.h" #if ART_USE_FUTEXES #include "linux/futex.h" #include "sys/syscall.h" #ifndef SYS_futex #define SYS_futex __NR_futex #endif #endif // ART_USE_FUTEXES namespace art { using android::base::StringPrintf; static constexpr uint64_t kLongThreadSuspendThreshold = MsToNs(5); // Use 0 since we want to yield to prevent blocking for an unpredictable amount of time. static constexpr useconds_t kThreadSuspendInitialSleepUs = 0; static constexpr useconds_t kThreadSuspendMaxYieldUs = 3000; static constexpr useconds_t kThreadSuspendMaxSleepUs = 5000; // Whether we should try to dump the native stack of unattached threads. See commit ed8b723 for // some history. static constexpr bool kDumpUnattachedThreadNativeStackForSigQuit = true; ThreadList::ThreadList(uint64_t thread_suspend_timeout_ns) : suspend_all_count_(0), unregistering_count_(0), suspend_all_historam_("suspend all histogram", 16, 64), long_suspend_(false), shut_down_(false), thread_suspend_timeout_ns_(thread_suspend_timeout_ns), empty_checkpoint_barrier_(new Barrier(0)) { CHECK(Monitor::IsValidLockWord(LockWord::FromThinLockId(kMaxThreadId, 1, 0U))); } ThreadList::~ThreadList() { CHECK(shut_down_); } void ThreadList::ShutDown() { ScopedTrace trace(__PRETTY_FUNCTION__); // Detach the current thread if necessary. If we failed to start, there might not be any threads. // We need to detach the current thread here in case there's another thread waiting to join with // us. bool contains = false; Thread* self = Thread::Current(); { MutexLock mu(self, *Locks::thread_list_lock_); contains = Contains(self); } if (contains) { Runtime::Current()->DetachCurrentThread(); } WaitForOtherNonDaemonThreadsToExit(); // Disable GC and wait for GC to complete in case there are still daemon threads doing // allocations. gc::Heap* const heap = Runtime::Current()->GetHeap(); heap->DisableGCForShutdown(); // In case a GC is in progress, wait for it to finish. heap->WaitForGcToComplete(gc::kGcCauseBackground, Thread::Current()); // TODO: there's an unaddressed race here where a thread may attach during shutdown, see // Thread::Init. SuspendAllDaemonThreadsForShutdown(); shut_down_ = true; } bool ThreadList::Contains(Thread* thread) { return find(list_.begin(), list_.end(), thread) != list_.end(); } pid_t ThreadList::GetLockOwner() { return Locks::thread_list_lock_->GetExclusiveOwnerTid(); } void ThreadList::DumpNativeStacks(std::ostream& os) { MutexLock mu(Thread::Current(), *Locks::thread_list_lock_); std::unique_ptr map(BacktraceMap::Create(getpid())); for (const auto& thread : list_) { os << "DUMPING THREAD " << thread->GetTid() << "\n"; DumpNativeStack(os, thread->GetTid(), map.get(), "\t"); os << "\n"; } } void ThreadList::DumpForSigQuit(std::ostream& os) { { ScopedObjectAccess soa(Thread::Current()); // Only print if we have samples. if (suspend_all_historam_.SampleSize() > 0) { Histogram::CumulativeData data; suspend_all_historam_.CreateHistogram(&data); suspend_all_historam_.PrintConfidenceIntervals(os, 0.99, data); // Dump time to suspend. } } bool dump_native_stack = Runtime::Current()->GetDumpNativeStackOnSigQuit(); Dump(os, dump_native_stack); DumpUnattachedThreads(os, dump_native_stack && kDumpUnattachedThreadNativeStackForSigQuit); } static void DumpUnattachedThread(std::ostream& os, pid_t tid, bool dump_native_stack) NO_THREAD_SAFETY_ANALYSIS { // TODO: No thread safety analysis as DumpState with a null thread won't access fields, should // refactor DumpState to avoid skipping analysis. Thread::DumpState(os, nullptr, tid); if (dump_native_stack) { DumpNativeStack(os, tid, nullptr, " native: "); } os << std::endl; } void ThreadList::DumpUnattachedThreads(std::ostream& os, bool dump_native_stack) { DIR* d = opendir("/proc/self/task"); if (!d) { return; } Thread* self = Thread::Current(); dirent* e; while ((e = readdir(d)) != nullptr) { char* end; pid_t tid = strtol(e->d_name, &end, 10); if (!*end) { Thread* thread; { MutexLock mu(self, *Locks::thread_list_lock_); thread = FindThreadByTid(tid); } if (thread == nullptr) { DumpUnattachedThread(os, tid, dump_native_stack); } } } closedir(d); } // Dump checkpoint timeout in milliseconds. Larger amount on the target, since the device could be // overloaded with ANR dumps. static constexpr uint32_t kDumpWaitTimeout = kIsTargetBuild ? 100000 : 20000; // A closure used by Thread::Dump. class DumpCheckpoint final : public Closure { public: DumpCheckpoint(std::ostream* os, bool dump_native_stack) : os_(os), // Avoid verifying count in case a thread doesn't end up passing through the barrier. // This avoids a SIGABRT that would otherwise happen in the destructor. barrier_(0, /*verify_count_on_shutdown=*/false), backtrace_map_(dump_native_stack ? BacktraceMap::Create(getpid()) : nullptr), dump_native_stack_(dump_native_stack) { if (backtrace_map_ != nullptr) { backtrace_map_->SetSuffixesToIgnore(std::vector { "oat", "odex" }); } } void Run(Thread* thread) override { // Note thread and self may not be equal if thread was already suspended at the point of the // request. Thread* self = Thread::Current(); CHECK(self != nullptr); std::ostringstream local_os; { ScopedObjectAccess soa(self); thread->Dump(local_os, dump_native_stack_, backtrace_map_.get()); } { // Use the logging lock to ensure serialization when writing to the common ostream. MutexLock mu(self, *Locks::logging_lock_); *os_ << local_os.str() << std::endl; } barrier_.Pass(self); } void WaitForThreadsToRunThroughCheckpoint(size_t threads_running_checkpoint) { Thread* self = Thread::Current(); ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun); bool timed_out = barrier_.Increment(self, threads_running_checkpoint, kDumpWaitTimeout); if (timed_out) { // Avoid a recursive abort. LOG((kIsDebugBuild && (gAborting == 0)) ? ::android::base::FATAL : ::android::base::ERROR) << "Unexpected time out during dump checkpoint."; } } private: // The common stream that will accumulate all the dumps. std::ostream* const os_; // The barrier to be passed through and for the requestor to wait upon. Barrier barrier_; // A backtrace map, so that all threads use a shared info and don't reacquire/parse separately. std::unique_ptr backtrace_map_; // Whether we should dump the native stack. const bool dump_native_stack_; }; void ThreadList::Dump(std::ostream& os, bool dump_native_stack) { Thread* self = Thread::Current(); { MutexLock mu(self, *Locks::thread_list_lock_); os << "DALVIK THREADS (" << list_.size() << "):\n"; } if (self != nullptr) { DumpCheckpoint checkpoint(&os, dump_native_stack); size_t threads_running_checkpoint; { // Use SOA to prevent deadlocks if multiple threads are calling Dump() at the same time. ScopedObjectAccess soa(self); threads_running_checkpoint = RunCheckpoint(&checkpoint); } if (threads_running_checkpoint != 0) { checkpoint.WaitForThreadsToRunThroughCheckpoint(threads_running_checkpoint); } } else { DumpUnattachedThreads(os, dump_native_stack); } } void ThreadList::AssertThreadsAreSuspended(Thread* self, Thread* ignore1, Thread* ignore2) { MutexLock mu(self, *Locks::thread_list_lock_); MutexLock mu2(self, *Locks::thread_suspend_count_lock_); for (const auto& thread : list_) { if (thread != ignore1 && thread != ignore2) { CHECK(thread->IsSuspended()) << "\nUnsuspended thread: <<" << *thread << "\n" << "self: <<" << *Thread::Current(); } } } #if HAVE_TIMED_RWLOCK // Attempt to rectify locks so that we dump thread list with required locks before exiting. NO_RETURN static void UnsafeLogFatalForThreadSuspendAllTimeout() { // Increment gAborting before doing the thread list dump since we don't want any failures from // AssertThreadSuspensionIsAllowable in cases where thread suspension is not allowed. // See b/69044468. ++gAborting; Runtime* runtime = Runtime::Current(); std::ostringstream ss; ss << "Thread suspend timeout\n"; Locks::mutator_lock_->Dump(ss); ss << "\n"; runtime->GetThreadList()->Dump(ss); --gAborting; LOG(FATAL) << ss.str(); exit(0); } #endif // Unlike suspending all threads where we can wait to acquire the mutator_lock_, suspending an // individual thread requires polling. delay_us is the requested sleep wait. If delay_us is 0 then // we use sched_yield instead of calling usleep. // Although there is the possibility, here and elsewhere, that usleep could return -1 and // errno = EINTR, there should be no problem if interrupted, so we do not check. static void ThreadSuspendSleep(useconds_t delay_us) { if (delay_us == 0) { sched_yield(); } else { usleep(delay_us); } } size_t ThreadList::RunCheckpoint(Closure* checkpoint_function, Closure* callback) { Thread* self = Thread::Current(); Locks::mutator_lock_->AssertNotExclusiveHeld(self); Locks::thread_list_lock_->AssertNotHeld(self); Locks::thread_suspend_count_lock_->AssertNotHeld(self); std::vector suspended_count_modified_threads; size_t count = 0; { // Call a checkpoint function for each thread, threads which are suspended get their checkpoint // manually called. MutexLock mu(self, *Locks::thread_list_lock_); MutexLock mu2(self, *Locks::thread_suspend_count_lock_); count = list_.size(); for (const auto& thread : list_) { if (thread != self) { bool requested_suspend = false; while (true) { if (thread->RequestCheckpoint(checkpoint_function)) { // This thread will run its checkpoint some time in the near future. if (requested_suspend) { // The suspend request is now unnecessary. bool updated = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal); DCHECK(updated); requested_suspend = false; } break; } else { // The thread is probably suspended, try to make sure that it stays suspended. if (thread->GetState() == kRunnable) { // Spurious fail, try again. continue; } if (!requested_suspend) { bool updated = thread->ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal); DCHECK(updated); requested_suspend = true; if (thread->IsSuspended()) { break; } // The thread raced us to become Runnable. Try to RequestCheckpoint() again. } else { // The thread previously raced our suspend request to become Runnable but // since it is suspended again, it must honor that suspend request now. DCHECK(thread->IsSuspended()); break; } } } if (requested_suspend) { suspended_count_modified_threads.push_back(thread); } } } // Run the callback to be called inside this critical section. if (callback != nullptr) { callback->Run(self); } } // Run the checkpoint on ourself while we wait for threads to suspend. checkpoint_function->Run(self); // Run the checkpoint on the suspended threads. for (const auto& thread : suspended_count_modified_threads) { // We know for sure that the thread is suspended at this point. DCHECK(thread->IsSuspended()); checkpoint_function->Run(thread); { MutexLock mu2(self, *Locks::thread_suspend_count_lock_); bool updated = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal); DCHECK(updated); } } { // Imitate ResumeAll, threads may be waiting on Thread::resume_cond_ since we raised their // suspend count. Now the suspend_count_ is lowered so we must do the broadcast. MutexLock mu2(self, *Locks::thread_suspend_count_lock_); Thread::resume_cond_->Broadcast(self); } return count; } void ThreadList::RunEmptyCheckpoint() { Thread* self = Thread::Current(); Locks::mutator_lock_->AssertNotExclusiveHeld(self); Locks::thread_list_lock_->AssertNotHeld(self); Locks::thread_suspend_count_lock_->AssertNotHeld(self); std::vector runnable_thread_ids; size_t count = 0; Barrier* barrier = empty_checkpoint_barrier_.get(); barrier->Init(self, 0); { MutexLock mu(self, *Locks::thread_list_lock_); MutexLock mu2(self, *Locks::thread_suspend_count_lock_); for (Thread* thread : list_) { if (thread != self) { while (true) { if (thread->RequestEmptyCheckpoint()) { // This thread will run an empty checkpoint (decrement the empty checkpoint barrier) // some time in the near future. ++count; if (kIsDebugBuild) { runnable_thread_ids.push_back(thread->GetThreadId()); } break; } if (thread->GetState() != kRunnable) { // It's seen suspended, we are done because it must not be in the middle of a mutator // heap access. break; } } } } } // Wake up the threads blocking for weak ref access so that they will respond to the empty // checkpoint request. Otherwise we will hang as they are blocking in the kRunnable state. Runtime::Current()->GetHeap()->GetReferenceProcessor()->BroadcastForSlowPath(self); Runtime::Current()->BroadcastForNewSystemWeaks(/*broadcast_for_checkpoint=*/true); { ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun); uint64_t total_wait_time = 0; bool first_iter = true; while (true) { // Wake up the runnable threads blocked on the mutexes that another thread, which is blocked // on a weak ref access, holds (indirectly blocking for weak ref access through another thread // and a mutex.) This needs to be done periodically because the thread may be preempted // between the CheckEmptyCheckpointFromMutex call and the subsequent futex wait in // Mutex::ExclusiveLock, etc. when the wakeup via WakeupToRespondToEmptyCheckpoint // arrives. This could cause a *very rare* deadlock, if not repeated. Most of the cases are // handled in the first iteration. for (BaseMutex* mutex : Locks::expected_mutexes_on_weak_ref_access_) { mutex->WakeupToRespondToEmptyCheckpoint(); } static constexpr uint64_t kEmptyCheckpointPeriodicTimeoutMs = 100; // 100ms static constexpr uint64_t kEmptyCheckpointTotalTimeoutMs = 600 * 1000; // 10 minutes. size_t barrier_count = first_iter ? count : 0; first_iter = false; // Don't add to the barrier count from the second iteration on. bool timed_out = barrier->Increment(self, barrier_count, kEmptyCheckpointPeriodicTimeoutMs); if (!timed_out) { break; // Success } // This is a very rare case. total_wait_time += kEmptyCheckpointPeriodicTimeoutMs; if (kIsDebugBuild && total_wait_time > kEmptyCheckpointTotalTimeoutMs) { std::ostringstream ss; ss << "Empty checkpoint timeout\n"; ss << "Barrier count " << barrier->GetCount(self) << "\n"; ss << "Runnable thread IDs"; for (uint32_t tid : runnable_thread_ids) { ss << " " << tid; } ss << "\n"; Locks::mutator_lock_->Dump(ss); ss << "\n"; LOG(FATAL_WITHOUT_ABORT) << ss.str(); // Some threads in 'runnable_thread_ids' are probably stuck. Try to dump their stacks. // Avoid using ThreadList::Dump() initially because it is likely to get stuck as well. { ScopedObjectAccess soa(self); MutexLock mu1(self, *Locks::thread_list_lock_); for (Thread* thread : GetList()) { uint32_t tid = thread->GetThreadId(); bool is_in_runnable_thread_ids = std::find(runnable_thread_ids.begin(), runnable_thread_ids.end(), tid) != runnable_thread_ids.end(); if (is_in_runnable_thread_ids && thread->ReadFlag(kEmptyCheckpointRequest)) { // Found a runnable thread that hasn't responded to the empty checkpoint request. // Assume it's stuck and safe to dump its stack. thread->Dump(LOG_STREAM(FATAL_WITHOUT_ABORT), /*dump_native_stack=*/ true, /*backtrace_map=*/ nullptr, /*force_dump_stack=*/ true); } } } LOG(FATAL_WITHOUT_ABORT) << "Dumped runnable threads that haven't responded to empty checkpoint."; // Now use ThreadList::Dump() to dump more threads, noting it may get stuck. Dump(LOG_STREAM(FATAL_WITHOUT_ABORT)); LOG(FATAL) << "Dumped all threads."; } } } } // A checkpoint/suspend-all hybrid to switch thread roots from // from-space to to-space refs. Used to synchronize threads at a point // to mark the initiation of marking while maintaining the to-space // invariant. size_t ThreadList::FlipThreadRoots(Closure* thread_flip_visitor, Closure* flip_callback, gc::collector::GarbageCollector* collector, gc::GcPauseListener* pause_listener) { TimingLogger::ScopedTiming split("ThreadListFlip", collector->GetTimings()); Thread* self = Thread::Current(); Locks::mutator_lock_->AssertNotHeld(self); Locks::thread_list_lock_->AssertNotHeld(self); Locks::thread_suspend_count_lock_->AssertNotHeld(self); CHECK_NE(self->GetState(), kRunnable); collector->GetHeap()->ThreadFlipBegin(self); // Sync with JNI critical calls. // ThreadFlipBegin happens before we suspend all the threads, so it does not count towards the // pause. const uint64_t suspend_start_time = NanoTime(); SuspendAllInternal(self, self, nullptr); if (pause_listener != nullptr) { pause_listener->StartPause(); } // Run the flip callback for the collector. Locks::mutator_lock_->ExclusiveLock(self); suspend_all_historam_.AdjustAndAddValue(NanoTime() - suspend_start_time); flip_callback->Run(self); Locks::mutator_lock_->ExclusiveUnlock(self); collector->RegisterPause(NanoTime() - suspend_start_time); if (pause_listener != nullptr) { pause_listener->EndPause(); } // Resume runnable threads. size_t runnable_thread_count = 0; std::vector other_threads; { TimingLogger::ScopedTiming split2("ResumeRunnableThreads", collector->GetTimings()); MutexLock mu(self, *Locks::thread_list_lock_); MutexLock mu2(self, *Locks::thread_suspend_count_lock_); --suspend_all_count_; for (const auto& thread : list_) { // Set the flip function for all threads because Thread::DumpState/DumpJavaStack() (invoked by // a checkpoint) may cause the flip function to be run for a runnable/suspended thread before // a runnable thread runs it for itself or we run it for a suspended thread below. thread->SetFlipFunction(thread_flip_visitor); if (thread == self) { continue; } // Resume early the threads that were runnable but are suspended just for this thread flip or // about to transition from non-runnable (eg. kNative at the SOA entry in a JNI function) to // runnable (both cases waiting inside Thread::TransitionFromSuspendedToRunnable), or waiting // for the thread flip to end at the JNI critical section entry (kWaitingForGcThreadFlip), ThreadState state = thread->GetState(); if ((state == kWaitingForGcThreadFlip || thread->IsTransitioningToRunnable()) && thread->GetSuspendCount() == 1) { // The thread will resume right after the broadcast. bool updated = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal); DCHECK(updated); ++runnable_thread_count; } else { other_threads.push_back(thread); } } Thread::resume_cond_->Broadcast(self); } collector->GetHeap()->ThreadFlipEnd(self); // Run the closure on the other threads and let them resume. { TimingLogger::ScopedTiming split3("FlipOtherThreads", collector->GetTimings()); ReaderMutexLock mu(self, *Locks::mutator_lock_); for (const auto& thread : other_threads) { Closure* flip_func = thread->GetFlipFunction(); if (flip_func != nullptr) { flip_func->Run(thread); } } // Run it for self. Closure* flip_func = self->GetFlipFunction(); if (flip_func != nullptr) { flip_func->Run(self); } } // Resume other threads. { TimingLogger::ScopedTiming split4("ResumeOtherThreads", collector->GetTimings()); MutexLock mu2(self, *Locks::thread_suspend_count_lock_); for (const auto& thread : other_threads) { bool updated = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal); DCHECK(updated); } Thread::resume_cond_->Broadcast(self); } return runnable_thread_count + other_threads.size() + 1; // +1 for self. } void ThreadList::SuspendAll(const char* cause, bool long_suspend) { Thread* self = Thread::Current(); if (self != nullptr) { VLOG(threads) << *self << " SuspendAll for " << cause << " starting..."; } else { VLOG(threads) << "Thread[null] SuspendAll for " << cause << " starting..."; } { ScopedTrace trace("Suspending mutator threads"); const uint64_t start_time = NanoTime(); SuspendAllInternal(self, self); // All threads are known to have suspended (but a thread may still own the mutator lock) // Make sure this thread grabs exclusive access to the mutator lock and its protected data. #if HAVE_TIMED_RWLOCK while (true) { if (Locks::mutator_lock_->ExclusiveLockWithTimeout(self, NsToMs(thread_suspend_timeout_ns_), 0)) { break; } else if (!long_suspend_) { // Reading long_suspend without the mutator lock is slightly racy, in some rare cases, this // could result in a thread suspend timeout. // Timeout if we wait more than thread_suspend_timeout_ns_ nanoseconds. UnsafeLogFatalForThreadSuspendAllTimeout(); } } #else Locks::mutator_lock_->ExclusiveLock(self); #endif long_suspend_ = long_suspend; const uint64_t end_time = NanoTime(); const uint64_t suspend_time = end_time - start_time; suspend_all_historam_.AdjustAndAddValue(suspend_time); if (suspend_time > kLongThreadSuspendThreshold) { LOG(WARNING) << "Suspending all threads took: " << PrettyDuration(suspend_time); } if (kDebugLocking) { // Debug check that all threads are suspended. AssertThreadsAreSuspended(self, self); } } ATraceBegin((std::string("Mutator threads suspended for ") + cause).c_str()); if (self != nullptr) { VLOG(threads) << *self << " SuspendAll complete"; } else { VLOG(threads) << "Thread[null] SuspendAll complete"; } } // Ensures all threads running Java suspend and that those not running Java don't start. void ThreadList::SuspendAllInternal(Thread* self, Thread* ignore1, Thread* ignore2, SuspendReason reason) { Locks::mutator_lock_->AssertNotExclusiveHeld(self); Locks::thread_list_lock_->AssertNotHeld(self); Locks::thread_suspend_count_lock_->AssertNotHeld(self); if (kDebugLocking && self != nullptr) { CHECK_NE(self->GetState(), kRunnable); } // First request that all threads suspend, then wait for them to suspend before // returning. This suspension scheme also relies on other behaviour: // 1. Threads cannot be deleted while they are suspended or have a suspend- // request flag set - (see Unregister() below). // 2. When threads are created, they are created in a suspended state (actually // kNative) and will never begin executing Java code without first checking // the suspend-request flag. // The atomic counter for number of threads that need to pass the barrier. AtomicInteger pending_threads; uint32_t num_ignored = 0; if (ignore1 != nullptr) { ++num_ignored; } if (ignore2 != nullptr && ignore1 != ignore2) { ++num_ignored; } { MutexLock mu(self, *Locks::thread_list_lock_); MutexLock mu2(self, *Locks::thread_suspend_count_lock_); // Update global suspend all state for attaching threads. ++suspend_all_count_; pending_threads.store(list_.size() - num_ignored, std::memory_order_relaxed); // Increment everybody's suspend count (except those that should be ignored). for (const auto& thread : list_) { if (thread == ignore1 || thread == ignore2) { continue; } VLOG(threads) << "requesting thread suspend: " << *thread; bool updated = thread->ModifySuspendCount(self, +1, &pending_threads, reason); DCHECK(updated); // Must install the pending_threads counter first, then check thread->IsSuspend() and clear // the counter. Otherwise there's a race with Thread::TransitionFromRunnableToSuspended() // that can lead a thread to miss a call to PassActiveSuspendBarriers(). if (thread->IsSuspended()) { // Only clear the counter for the current thread. thread->ClearSuspendBarrier(&pending_threads); pending_threads.fetch_sub(1, std::memory_order_seq_cst); } } } // Wait for the barrier to be passed by all runnable threads. This wait // is done with a timeout so that we can detect problems. #if ART_USE_FUTEXES timespec wait_timeout; InitTimeSpec(false, CLOCK_MONOTONIC, NsToMs(thread_suspend_timeout_ns_), 0, &wait_timeout); #endif const uint64_t start_time = NanoTime(); while (true) { int32_t cur_val = pending_threads.load(std::memory_order_relaxed); if (LIKELY(cur_val > 0)) { #if ART_USE_FUTEXES if (futex(pending_threads.Address(), FUTEX_WAIT_PRIVATE, cur_val, &wait_timeout, nullptr, 0) != 0) { if ((errno == EAGAIN) || (errno == EINTR)) { // EAGAIN and EINTR both indicate a spurious failure, try again from the beginning. continue; } if (errno == ETIMEDOUT) { const uint64_t wait_time = NanoTime() - start_time; MutexLock mu(self, *Locks::thread_list_lock_); MutexLock mu2(self, *Locks::thread_suspend_count_lock_); std::ostringstream oss; for (const auto& thread : list_) { if (thread == ignore1 || thread == ignore2) { continue; } if (!thread->IsSuspended()) { oss << std::endl << "Thread not suspended: " << *thread; } } LOG(kIsDebugBuild ? ::android::base::FATAL : ::android::base::ERROR) << "Timed out waiting for threads to suspend, waited for " << PrettyDuration(wait_time) << oss.str(); } else { PLOG(FATAL) << "futex wait failed for SuspendAllInternal()"; } } // else re-check pending_threads in the next iteration (this may be a spurious wake-up). #else // Spin wait. This is likely to be slow, but on most architecture ART_USE_FUTEXES is set. UNUSED(start_time); #endif } else { CHECK_EQ(cur_val, 0); break; } } } void ThreadList::ResumeAll() { Thread* self = Thread::Current(); if (self != nullptr) { VLOG(threads) << *self << " ResumeAll starting"; } else { VLOG(threads) << "Thread[null] ResumeAll starting"; } ATraceEnd(); ScopedTrace trace("Resuming mutator threads"); if (kDebugLocking) { // Debug check that all threads are suspended. AssertThreadsAreSuspended(self, self); } long_suspend_ = false; Locks::mutator_lock_->ExclusiveUnlock(self); { MutexLock mu(self, *Locks::thread_list_lock_); MutexLock mu2(self, *Locks::thread_suspend_count_lock_); // Update global suspend all state for attaching threads. --suspend_all_count_; // Decrement the suspend counts for all threads. for (const auto& thread : list_) { if (thread == self) { continue; } bool updated = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal); DCHECK(updated); } // Broadcast a notification to all suspended threads, some or all of // which may choose to wake up. No need to wait for them. if (self != nullptr) { VLOG(threads) << *self << " ResumeAll waking others"; } else { VLOG(threads) << "Thread[null] ResumeAll waking others"; } Thread::resume_cond_->Broadcast(self); } if (self != nullptr) { VLOG(threads) << *self << " ResumeAll complete"; } else { VLOG(threads) << "Thread[null] ResumeAll complete"; } } bool ThreadList::Resume(Thread* thread, SuspendReason reason) { // This assumes there was an ATraceBegin when we suspended the thread. ATraceEnd(); Thread* self = Thread::Current(); DCHECK_NE(thread, self); VLOG(threads) << "Resume(" << reinterpret_cast(thread) << ") starting..." << reason; { // To check Contains. MutexLock mu(self, *Locks::thread_list_lock_); // To check IsSuspended. MutexLock mu2(self, *Locks::thread_suspend_count_lock_); if (UNLIKELY(!thread->IsSuspended())) { LOG(ERROR) << "Resume(" << reinterpret_cast(thread) << ") thread not suspended"; return false; } if (!Contains(thread)) { // We only expect threads within the thread-list to have been suspended otherwise we can't // stop such threads from delete-ing themselves. LOG(ERROR) << "Resume(" << reinterpret_cast(thread) << ") thread not within thread list"; return false; } if (UNLIKELY(!thread->ModifySuspendCount(self, -1, nullptr, reason))) { LOG(ERROR) << "Resume(" << reinterpret_cast(thread) << ") could not modify suspend count."; return false; } } { VLOG(threads) << "Resume(" << reinterpret_cast(thread) << ") waking others"; MutexLock mu(self, *Locks::thread_suspend_count_lock_); Thread::resume_cond_->Broadcast(self); } VLOG(threads) << "Resume(" << reinterpret_cast(thread) << ") complete"; return true; } static void ThreadSuspendByPeerWarning(Thread* self, LogSeverity severity, const char* message, jobject peer) { JNIEnvExt* env = self->GetJniEnv(); ScopedLocalRef scoped_name_string(env, static_cast(env->GetObjectField( peer, WellKnownClasses::java_lang_Thread_name))); ScopedUtfChars scoped_name_chars(env, scoped_name_string.get()); if (scoped_name_chars.c_str() == nullptr) { LOG(severity) << message << ": " << peer; env->ExceptionClear(); } else { LOG(severity) << message << ": " << peer << ":" << scoped_name_chars.c_str(); } } Thread* ThreadList::SuspendThreadByPeer(jobject peer, bool request_suspension, SuspendReason reason, bool* timed_out) { const uint64_t start_time = NanoTime(); useconds_t sleep_us = kThreadSuspendInitialSleepUs; *timed_out = false; Thread* const self = Thread::Current(); Thread* suspended_thread = nullptr; VLOG(threads) << "SuspendThreadByPeer starting"; while (true) { Thread* thread; { // Note: this will transition to runnable and potentially suspend. We ensure only one thread // is requesting another suspend, to avoid deadlock, by requiring this function be called // holding Locks::thread_list_suspend_thread_lock_. Its important this thread suspend rather // than request thread suspension, to avoid potential cycles in threads requesting each other // suspend. ScopedObjectAccess soa(self); MutexLock thread_list_mu(self, *Locks::thread_list_lock_); thread = Thread::FromManagedThread(soa, peer); if (thread == nullptr) { if (suspended_thread != nullptr) { MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_); // If we incremented the suspend count but the thread reset its peer, we need to // re-decrement it since it is shutting down and may deadlock the runtime in // ThreadList::WaitForOtherNonDaemonThreadsToExit. bool updated = suspended_thread->ModifySuspendCount(soa.Self(), -1, nullptr, reason); DCHECK(updated); } ThreadSuspendByPeerWarning(self, ::android::base::WARNING, "No such thread for suspend", peer); return nullptr; } if (!Contains(thread)) { CHECK(suspended_thread == nullptr); VLOG(threads) << "SuspendThreadByPeer failed for unattached thread: " << reinterpret_cast(thread); return nullptr; } VLOG(threads) << "SuspendThreadByPeer found thread: " << *thread; { MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_); if (request_suspension) { if (self->GetSuspendCount() > 0) { // We hold the suspend count lock but another thread is trying to suspend us. Its not // safe to try to suspend another thread in case we get a cycle. Start the loop again // which will allow this thread to be suspended. continue; } CHECK(suspended_thread == nullptr); suspended_thread = thread; bool updated = suspended_thread->ModifySuspendCount(self, +1, nullptr, reason); DCHECK(updated); request_suspension = false; } else { // If the caller isn't requesting suspension, a suspension should have already occurred. CHECK_GT(thread->GetSuspendCount(), 0); } // IsSuspended on the current thread will fail as the current thread is changed into // Runnable above. As the suspend count is now raised if this is the current thread // it will self suspend on transition to Runnable, making it hard to work with. It's simpler // to just explicitly handle the current thread in the callers to this code. CHECK_NE(thread, self) << "Attempt to suspend the current thread for the debugger"; // If thread is suspended (perhaps it was already not Runnable but didn't have a suspend // count, or else we've waited and it has self suspended) or is the current thread, we're // done. if (thread->IsSuspended()) { VLOG(threads) << "SuspendThreadByPeer thread suspended: " << *thread; if (ATraceEnabled()) { std::string name; thread->GetThreadName(name); ATraceBegin(StringPrintf("SuspendThreadByPeer suspended %s for peer=%p", name.c_str(), peer).c_str()); } return thread; } const uint64_t total_delay = NanoTime() - start_time; if (total_delay >= thread_suspend_timeout_ns_) { ThreadSuspendByPeerWarning(self, ::android::base::FATAL, "Thread suspension timed out", peer); if (suspended_thread != nullptr) { CHECK_EQ(suspended_thread, thread); bool updated = suspended_thread->ModifySuspendCount(soa.Self(), -1, nullptr, reason); DCHECK(updated); } *timed_out = true; return nullptr; } else if (sleep_us == 0 && total_delay > static_cast(kThreadSuspendMaxYieldUs) * 1000) { // We have spun for kThreadSuspendMaxYieldUs time, switch to sleeps to prevent // excessive CPU usage. sleep_us = kThreadSuspendMaxYieldUs / 2; } } // Release locks and come out of runnable state. } VLOG(threads) << "SuspendThreadByPeer waiting to allow thread chance to suspend"; ThreadSuspendSleep(sleep_us); // This may stay at 0 if sleep_us == 0, but this is WAI since we want to avoid using usleep at // all if possible. This shouldn't be an issue since time to suspend should always be small. sleep_us = std::min(sleep_us * 2, kThreadSuspendMaxSleepUs); } } static void ThreadSuspendByThreadIdWarning(LogSeverity severity, const char* message, uint32_t thread_id) { LOG(severity) << StringPrintf("%s: %d", message, thread_id); } Thread* ThreadList::SuspendThreadByThreadId(uint32_t thread_id, SuspendReason reason, bool* timed_out) { const uint64_t start_time = NanoTime(); useconds_t sleep_us = kThreadSuspendInitialSleepUs; *timed_out = false; Thread* suspended_thread = nullptr; Thread* const self = Thread::Current(); CHECK_NE(thread_id, kInvalidThreadId); VLOG(threads) << "SuspendThreadByThreadId starting"; while (true) { { // Note: this will transition to runnable and potentially suspend. We ensure only one thread // is requesting another suspend, to avoid deadlock, by requiring this function be called // holding Locks::thread_list_suspend_thread_lock_. Its important this thread suspend rather // than request thread suspension, to avoid potential cycles in threads requesting each other // suspend. ScopedObjectAccess soa(self); MutexLock thread_list_mu(self, *Locks::thread_list_lock_); Thread* thread = nullptr; for (const auto& it : list_) { if (it->GetThreadId() == thread_id) { thread = it; break; } } if (thread == nullptr) { CHECK(suspended_thread == nullptr) << "Suspended thread " << suspended_thread << " no longer in thread list"; // There's a race in inflating a lock and the owner giving up ownership and then dying. ThreadSuspendByThreadIdWarning(::android::base::WARNING, "No such thread id for suspend", thread_id); return nullptr; } VLOG(threads) << "SuspendThreadByThreadId found thread: " << *thread; DCHECK(Contains(thread)); { MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_); if (suspended_thread == nullptr) { if (self->GetSuspendCount() > 0) { // We hold the suspend count lock but another thread is trying to suspend us. Its not // safe to try to suspend another thread in case we get a cycle. Start the loop again // which will allow this thread to be suspended. continue; } bool updated = thread->ModifySuspendCount(self, +1, nullptr, reason); DCHECK(updated); suspended_thread = thread; } else { CHECK_EQ(suspended_thread, thread); // If the caller isn't requesting suspension, a suspension should have already occurred. CHECK_GT(thread->GetSuspendCount(), 0); } // IsSuspended on the current thread will fail as the current thread is changed into // Runnable above. As the suspend count is now raised if this is the current thread // it will self suspend on transition to Runnable, making it hard to work with. It's simpler // to just explicitly handle the current thread in the callers to this code. CHECK_NE(thread, self) << "Attempt to suspend the current thread for the debugger"; // If thread is suspended (perhaps it was already not Runnable but didn't have a suspend // count, or else we've waited and it has self suspended) or is the current thread, we're // done. if (thread->IsSuspended()) { if (ATraceEnabled()) { std::string name; thread->GetThreadName(name); ATraceBegin(StringPrintf("SuspendThreadByThreadId suspended %s id=%d", name.c_str(), thread_id).c_str()); } VLOG(threads) << "SuspendThreadByThreadId thread suspended: " << *thread; return thread; } const uint64_t total_delay = NanoTime() - start_time; if (total_delay >= thread_suspend_timeout_ns_) { ThreadSuspendByThreadIdWarning(::android::base::WARNING, "Thread suspension timed out", thread_id); if (suspended_thread != nullptr) { bool updated = thread->ModifySuspendCount(soa.Self(), -1, nullptr, reason); DCHECK(updated); } *timed_out = true; return nullptr; } else if (sleep_us == 0 && total_delay > static_cast(kThreadSuspendMaxYieldUs) * 1000) { // We have spun for kThreadSuspendMaxYieldUs time, switch to sleeps to prevent // excessive CPU usage. sleep_us = kThreadSuspendMaxYieldUs / 2; } } // Release locks and come out of runnable state. } VLOG(threads) << "SuspendThreadByThreadId waiting to allow thread chance to suspend"; ThreadSuspendSleep(sleep_us); sleep_us = std::min(sleep_us * 2, kThreadSuspendMaxSleepUs); } } Thread* ThreadList::FindThreadByThreadId(uint32_t thread_id) { for (const auto& thread : list_) { if (thread->GetThreadId() == thread_id) { return thread; } } return nullptr; } Thread* ThreadList::FindThreadByTid(int tid) { for (const auto& thread : list_) { if (thread->GetTid() == tid) { return thread; } } return nullptr; } void ThreadList::WaitForOtherNonDaemonThreadsToExit(bool check_no_birth) { ScopedTrace trace(__PRETTY_FUNCTION__); Thread* self = Thread::Current(); Locks::mutator_lock_->AssertNotHeld(self); while (true) { Locks::runtime_shutdown_lock_->Lock(self); if (check_no_birth) { // No more threads can be born after we start to shutdown. CHECK(Runtime::Current()->IsShuttingDownLocked()); CHECK_EQ(Runtime::Current()->NumberOfThreadsBeingBorn(), 0U); } else { if (Runtime::Current()->NumberOfThreadsBeingBorn() != 0U) { // Awkward. Shutdown_cond_ is private, but the only live thread may not be registered yet. // Fortunately, this is used mostly for testing, and not performance-critical. Locks::runtime_shutdown_lock_->Unlock(self); usleep(1000); continue; } } MutexLock mu(self, *Locks::thread_list_lock_); Locks::runtime_shutdown_lock_->Unlock(self); // Also wait for any threads that are unregistering to finish. This is required so that no // threads access the thread list after it is deleted. TODO: This may not work for user daemon // threads since they could unregister at the wrong time. bool done = unregistering_count_ == 0; if (done) { for (const auto& thread : list_) { if (thread != self && !thread->IsDaemon()) { done = false; break; } } } if (done) { break; } // Wait for another thread to exit before re-checking. Locks::thread_exit_cond_->Wait(self); } } void ThreadList::SuspendAllDaemonThreadsForShutdown() { ScopedTrace trace(__PRETTY_FUNCTION__); Thread* self = Thread::Current(); size_t daemons_left = 0; { // Tell all the daemons it's time to suspend. MutexLock mu(self, *Locks::thread_list_lock_); MutexLock mu2(self, *Locks::thread_suspend_count_lock_); for (const auto& thread : list_) { // This is only run after all non-daemon threads have exited, so the remainder should all be // daemons. CHECK(thread->IsDaemon()) << *thread; if (thread != self) { bool updated = thread->ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal); DCHECK(updated); ++daemons_left; } // We are shutting down the runtime, set the JNI functions of all the JNIEnvs to be // the sleep forever one. thread->GetJniEnv()->SetFunctionsToRuntimeShutdownFunctions(); } } if (daemons_left == 0) { // No threads left; safe to shut down. return; } // There is not a clean way to shut down if we have daemons left. We have no mechanism for // killing them and reclaiming thread stacks. We also have no mechanism for waiting until they // have truly finished touching the memory we are about to deallocate. We do the best we can with // timeouts. // // If we have any daemons left, wait until they are (a) suspended and (b) they are not stuck // in a place where they are about to access runtime state and are not in a runnable state. // We attempt to do the latter by just waiting long enough for things to // quiesce. Examples: Monitor code or waking up from a condition variable. // // Give the threads a chance to suspend, complaining if they're slow. (a) bool have_complained = false; static constexpr size_t kTimeoutMicroseconds = 2000 * 1000; static constexpr size_t kSleepMicroseconds = 1000; bool all_suspended = false; for (size_t i = 0; !all_suspended && i < kTimeoutMicroseconds / kSleepMicroseconds; ++i) { bool found_running = false; { MutexLock mu(self, *Locks::thread_list_lock_); for (const auto& thread : list_) { if (thread != self && thread->GetState() == kRunnable) { if (!have_complained) { LOG(WARNING) << "daemon thread not yet suspended: " << *thread; have_complained = true; } found_running = true; } } } if (found_running) { // Sleep briefly before checking again. Max total sleep time is kTimeoutMicroseconds. usleep(kSleepMicroseconds); } else { all_suspended = true; } } if (!all_suspended) { // We can get here if a daemon thread executed a fastnative native call, so that it // remained in runnable state, and then made a JNI call after we called // SetFunctionsToRuntimeShutdownFunctions(), causing it to permanently stay in a harmless // but runnable state. See b/147804269 . LOG(WARNING) << "timed out suspending all daemon threads"; } // Assume all threads are either suspended or somehow wedged. // Wait again for all the now "suspended" threads to actually quiesce. (b) static constexpr size_t kDaemonSleepTime = 400'000; usleep(kDaemonSleepTime); std::list list_copy; { MutexLock mu(self, *Locks::thread_list_lock_); // Half-way through the wait, set the "runtime deleted" flag, causing any newly awoken // threads to immediately go back to sleep without touching memory. This prevents us from // touching deallocated memory, but it also prevents mutexes from getting released. Thus we // only do this once we're reasonably sure that no system mutexes are still held. for (const auto& thread : list_) { DCHECK(thread == self || !all_suspended || thread->GetState() != kRunnable); // In the !all_suspended case, the target is probably sleeping. thread->GetJniEnv()->SetRuntimeDeleted(); // Possibly contended Mutex acquisitions are unsafe after this. // Releasing thread_list_lock_ is OK, since it can't block. } } // Finally wait for any threads woken before we set the "runtime deleted" flags to finish // touching memory. usleep(kDaemonSleepTime); #if defined(__has_feature) #if __has_feature(address_sanitizer) || __has_feature(hwaddress_sanitizer) // Sleep a bit longer with -fsanitize=address, since everything is slower. usleep(2 * kDaemonSleepTime); #endif #endif // At this point no threads should be touching our data structures anymore. } void ThreadList::Register(Thread* self) { DCHECK_EQ(self, Thread::Current()); CHECK(!shut_down_); if (VLOG_IS_ON(threads)) { std::ostringstream oss; self->ShortDump(oss); // We don't hold the mutator_lock_ yet and so cannot call Dump. LOG(INFO) << "ThreadList::Register() " << *self << "\n" << oss.str(); } // Atomically add self to the thread list and make its thread_suspend_count_ reflect ongoing // SuspendAll requests. MutexLock mu(self, *Locks::thread_list_lock_); MutexLock mu2(self, *Locks::thread_suspend_count_lock_); // Modify suspend count in increments of 1 to maintain invariants in ModifySuspendCount. While // this isn't particularly efficient the suspend counts are most commonly 0 or 1. for (int delta = suspend_all_count_; delta > 0; delta--) { bool updated = self->ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal); DCHECK(updated); } CHECK(!Contains(self)); list_.push_back(self); if (kUseReadBarrier) { gc::collector::ConcurrentCopying* const cc = Runtime::Current()->GetHeap()->ConcurrentCopyingCollector(); // Initialize according to the state of the CC collector. self->SetIsGcMarkingAndUpdateEntrypoints(cc->IsMarking()); if (cc->IsUsingReadBarrierEntrypoints()) { self->SetReadBarrierEntrypoints(); } self->SetWeakRefAccessEnabled(cc->IsWeakRefAccessEnabled()); } self->NotifyInTheadList(); } void ThreadList::Unregister(Thread* self) { DCHECK_EQ(self, Thread::Current()); CHECK_NE(self->GetState(), kRunnable); Locks::mutator_lock_->AssertNotHeld(self); VLOG(threads) << "ThreadList::Unregister() " << *self; { MutexLock mu(self, *Locks::thread_list_lock_); ++unregistering_count_; } // Any time-consuming destruction, plus anything that can call back into managed code or // suspend and so on, must happen at this point, and not in ~Thread. The self->Destroy is what // causes the threads to join. It is important to do this after incrementing unregistering_count_ // since we want the runtime to wait for the daemon threads to exit before deleting the thread // list. self->Destroy(); // If tracing, remember thread id and name before thread exits. Trace::StoreExitingThreadInfo(self); uint32_t thin_lock_id = self->GetThreadId(); while (true) { // Remove and delete the Thread* while holding the thread_list_lock_ and // thread_suspend_count_lock_ so that the unregistering thread cannot be suspended. // Note: deliberately not using MutexLock that could hold a stale self pointer. { MutexLock mu(self, *Locks::thread_list_lock_); if (!Contains(self)) { std::string thread_name; self->GetThreadName(thread_name); std::ostringstream os; DumpNativeStack(os, GetTid(), nullptr, " native: ", nullptr); LOG(ERROR) << "Request to unregister unattached thread " << thread_name << "\n" << os.str(); break; } else { MutexLock mu2(self, *Locks::thread_suspend_count_lock_); if (!self->IsSuspended()) { list_.remove(self); break; } } } // In the case where we are not suspended yet, sleep to leave other threads time to execute. // This is important if there are realtime threads. b/111277984 usleep(1); // We failed to remove the thread due to a suspend request, loop and try again. } delete self; // Release the thread ID after the thread is finished and deleted to avoid cases where we can // temporarily have multiple threads with the same thread id. When this occurs, it causes // problems in FindThreadByThreadId / SuspendThreadByThreadId. ReleaseThreadId(nullptr, thin_lock_id); // Clear the TLS data, so that the underlying native thread is recognizably detached. // (It may wish to reattach later.) #ifdef __BIONIC__ __get_tls()[TLS_SLOT_ART_THREAD_SELF] = nullptr; #else CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, nullptr), "detach self"); Thread::self_tls_ = nullptr; #endif // Signal that a thread just detached. MutexLock mu(nullptr, *Locks::thread_list_lock_); --unregistering_count_; Locks::thread_exit_cond_->Broadcast(nullptr); } void ThreadList::ForEach(void (*callback)(Thread*, void*), void* context) { for (const auto& thread : list_) { callback(thread, context); } } void ThreadList::VisitRootsForSuspendedThreads(RootVisitor* visitor) { Thread* const self = Thread::Current(); std::vector threads_to_visit; // Tell threads to suspend and copy them into list. { MutexLock mu(self, *Locks::thread_list_lock_); MutexLock mu2(self, *Locks::thread_suspend_count_lock_); for (Thread* thread : list_) { bool suspended = thread->ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal); DCHECK(suspended); if (thread == self || thread->IsSuspended()) { threads_to_visit.push_back(thread); } else { bool resumed = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal); DCHECK(resumed); } } } // Visit roots without holding thread_list_lock_ and thread_suspend_count_lock_ to prevent lock // order violations. for (Thread* thread : threads_to_visit) { thread->VisitRoots(visitor, kVisitRootFlagAllRoots); } // Restore suspend counts. { MutexLock mu2(self, *Locks::thread_suspend_count_lock_); for (Thread* thread : threads_to_visit) { bool updated = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal); DCHECK(updated); } } } void ThreadList::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) const { MutexLock mu(Thread::Current(), *Locks::thread_list_lock_); for (const auto& thread : list_) { thread->VisitRoots(visitor, flags); } } void ThreadList::SweepInterpreterCaches(IsMarkedVisitor* visitor) const { MutexLock mu(Thread::Current(), *Locks::thread_list_lock_); for (const auto& thread : list_) { thread->SweepInterpreterCache(visitor); } } void ThreadList::VisitReflectiveTargets(ReflectiveValueVisitor *visitor) const { MutexLock mu(Thread::Current(), *Locks::thread_list_lock_); for (const auto& thread : list_) { thread->VisitReflectiveTargets(visitor); } } uint32_t ThreadList::AllocThreadId(Thread* self) { MutexLock mu(self, *Locks::allocated_thread_ids_lock_); for (size_t i = 0; i < allocated_ids_.size(); ++i) { if (!allocated_ids_[i]) { allocated_ids_.set(i); return i + 1; // Zero is reserved to mean "invalid". } } LOG(FATAL) << "Out of internal thread ids"; UNREACHABLE(); } void ThreadList::ReleaseThreadId(Thread* self, uint32_t id) { MutexLock mu(self, *Locks::allocated_thread_ids_lock_); --id; // Zero is reserved to mean "invalid". DCHECK(allocated_ids_[id]) << id; allocated_ids_.reset(id); } ScopedSuspendAll::ScopedSuspendAll(const char* cause, bool long_suspend) { Runtime::Current()->GetThreadList()->SuspendAll(cause, long_suspend); } ScopedSuspendAll::~ScopedSuspendAll() { Runtime::Current()->GetThreadList()->ResumeAll(); } } // namespace art