// // Copyright (c) 2017 The Khronos Group Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // #include "testBase.h" #include "harness/imageHelpers.h" #include "harness/propertyHelpers.h" #include #include #include int test_get_platform_info(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements) { cl_platform_id platform; cl_int error; char buffer[ 16384 ]; size_t length; // Get the platform to use error = clGetPlatformIDs(1, &platform, NULL); test_error( error, "Unable to get platform" ); // Platform profile should either be FULL_PROFILE or EMBEDDED_PROFILE error = clGetPlatformInfo(platform, CL_PLATFORM_PROFILE, sizeof( buffer ), buffer, &length ); test_error( error, "Unable to get platform profile string" ); log_info("Returned CL_PLATFORM_PROFILE %s.\n", buffer); if( strcmp( buffer, "FULL_PROFILE" ) != 0 && strcmp( buffer, "EMBEDDED_PROFILE" ) != 0 ) { log_error( "ERROR: Returned platform profile string is not a valid string by OpenCL 1.2! (Returned: %s)\n", buffer ); return -1; } if( strlen( buffer )+1 != length ) { log_error( "ERROR: Returned length of profile string is incorrect (actual length: %d, returned length: %d)\n", (int)strlen( buffer )+1, (int)length ); return -1; } // Check just length return error = clGetPlatformInfo(platform, CL_PLATFORM_PROFILE, 0, NULL, &length ); test_error( error, "Unable to get platform profile length" ); if( strlen( (char *)buffer )+1 != length ) { log_error( "ERROR: Returned length of profile string is incorrect (actual length: %d, returned length: %d)\n", (int)strlen( (char *)buffer )+1, (int)length ); return -1; } // Platform version should fit the regex "OpenCL *[0-9]+\.[0-9]+" error = clGetPlatformInfo(platform, CL_PLATFORM_VERSION, sizeof( buffer ), buffer, &length ); test_error( error, "Unable to get platform version string" ); log_info("Returned CL_PLATFORM_VERSION %s.\n", buffer); if( memcmp( buffer, "OpenCL ", strlen( "OpenCL " ) ) != 0 ) { log_error( "ERROR: Initial part of platform version string does not match required format! (returned: %s)\n", (char *)buffer ); return -1; } char *p1 = (char *)buffer + strlen( "OpenCL " ); while( *p1 == ' ' ) p1++; char *p2 = p1; while( isdigit( *p2 ) ) p2++; if( *p2 != '.' ) { log_error( "ERROR: Numeric part of platform version string does not match required format! (returned: %s)\n", (char *)buffer ); return -1; } char *p3 = p2 + 1; while( isdigit( *p3 ) ) p3++; if( *p3 != ' ' ) { log_error( "ERROR: space expected after minor version number! (returned: %s)\n", (char *)buffer ); return -1; } *p2 = ' '; // Put in a space for atoi below. p2++; // make sure it is null terminated for( ; p3 != buffer + length; p3++ ) if( *p3 == '\0' ) break; if( p3 == buffer + length ) { log_error( "ERROR: platform version string is not NUL terminated!\n" ); return -1; } int major = atoi( p1 ); int minor = atoi( p2 ); int minor_revision = 2; if( major * 10 + minor < 10 + minor_revision ) { log_error( "ERROR: OpenCL profile version returned is less than 1.%d!\n", minor_revision ); return -1; } // Sanity checks on the returned values if( length != strlen( (char *)buffer ) + 1) { log_error( "ERROR: Returned length of version string does not match actual length (actual: %d, returned: %d)\n", (int)strlen( (char *)buffer )+1, (int)length ); return -1; } // Check just length error = clGetPlatformInfo(platform, CL_PLATFORM_VERSION, 0, NULL, &length ); test_error( error, "Unable to get platform version length" ); if( length != strlen( (char *)buffer )+1 ) { log_error( "ERROR: Returned length of version string does not match actual length (actual: %d, returned: %d)\n", (int)strlen( buffer )+1, (int)length ); return -1; } return 0; } template int sampler_param_test(cl_sampler sampler, cl_sampler_info param_name, T expected, const char *name) { size_t size; T val; int error = clGetSamplerInfo(sampler, param_name, sizeof(val), &val, &size); test_error(error, "Unable to get sampler info"); if (val != expected) { test_fail("ERROR: Sampler %s did not validate!\n", name); } if (size != sizeof(val)) { test_fail("ERROR: Returned size of sampler %s does not validate! " "(expected %d, got %d)\n", name, (int)sizeof(val), (int)size); } return 0; } static cl_int normalized_coord_values[] = { CL_TRUE, CL_FALSE }; static cl_addressing_mode addressing_mode_values[] = { CL_ADDRESS_NONE, CL_ADDRESS_CLAMP_TO_EDGE, CL_ADDRESS_CLAMP, CL_ADDRESS_REPEAT, CL_ADDRESS_MIRRORED_REPEAT }; static cl_filter_mode filter_mode_values[] = { CL_FILTER_NEAREST, CL_FILTER_LINEAR }; int test_sampler_params(cl_device_id deviceID, cl_context context, bool is_compatibility, int norm_coord_num, int addr_mod_num, int filt_mod_num) { cl_uint refCount; size_t size; int error; clSamplerWrapper sampler; cl_sampler_properties properties[] = { CL_SAMPLER_NORMALIZED_COORDS, normalized_coord_values[norm_coord_num], CL_SAMPLER_ADDRESSING_MODE, addressing_mode_values[addr_mod_num], CL_SAMPLER_FILTER_MODE, filter_mode_values[filt_mod_num], 0 }; if (is_compatibility) { sampler = clCreateSampler(context, normalized_coord_values[norm_coord_num], addressing_mode_values[addr_mod_num], filter_mode_values[filt_mod_num], &error); test_error(error, "Unable to create sampler to test with"); } else { sampler = clCreateSamplerWithProperties(context, properties, &error); test_error(error, "Unable to create sampler to test with"); } error = clGetSamplerInfo(sampler, CL_SAMPLER_REFERENCE_COUNT, sizeof(refCount), &refCount, &size); test_error(error, "Unable to get sampler ref count"); test_assert_error(size == sizeof(refCount), "Returned size of sampler refcount does not validate!\n"); error = sampler_param_test(sampler, CL_SAMPLER_CONTEXT, context, "context"); test_error(error, "param checking failed"); error = sampler_param_test(sampler, CL_SAMPLER_ADDRESSING_MODE, addressing_mode_values[addr_mod_num], "addressing mode"); test_error(error, "param checking failed"); error = sampler_param_test(sampler, CL_SAMPLER_FILTER_MODE, filter_mode_values[filt_mod_num], "filter mode"); test_error(error, "param checking failed"); error = sampler_param_test(sampler, CL_SAMPLER_NORMALIZED_COORDS, normalized_coord_values[norm_coord_num], "normalized coords"); test_error(error, "param checking failed"); Version version = get_device_cl_version(deviceID); if (version >= Version(3, 0)) { std::vector test_properties( properties, properties + ARRAY_SIZE(properties)); std::vector check_properties; size_t set_size; error = clGetSamplerInfo(sampler, CL_SAMPLER_PROPERTIES, 0, NULL, &set_size); test_error( error, "clGetSamplerInfo failed asking for CL_SAMPLER_PROPERTIES size."); if (is_compatibility) { if (set_size != 0) { log_error( "ERROR: CL_SAMPLER_PROPERTIES size is %d, expected 0\n", set_size); return TEST_FAIL; } } else { if (set_size != test_properties.size() * sizeof(cl_sampler_properties)) { log_error( "ERROR: CL_SAMPLER_PROPERTIES size is %d, expected %d.\n", set_size, test_properties.size() * sizeof(cl_sampler_properties)); return TEST_FAIL; } cl_uint number_of_props = set_size / sizeof(cl_sampler_properties); check_properties.resize(number_of_props); error = clGetSamplerInfo(sampler, CL_SAMPLER_PROPERTIES, set_size, check_properties.data(), 0); test_error( error, "clGetSamplerInfo failed asking for CL_SAMPLER_PROPERTIES."); error = compareProperties(check_properties, test_properties); test_error(error, "checkProperties mismatch."); } } return 0; } int get_sampler_info_params(cl_device_id deviceID, cl_context context, bool is_compatibility) { for (int norm_coord_num = 0; norm_coord_num < ARRAY_SIZE(normalized_coord_values); norm_coord_num++) { for (int addr_mod_num = 0; addr_mod_num < ARRAY_SIZE(addressing_mode_values); addr_mod_num++) { if ((normalized_coord_values[norm_coord_num] == CL_FALSE) && ((addressing_mode_values[addr_mod_num] == CL_ADDRESS_REPEAT) || (addressing_mode_values[addr_mod_num] == CL_ADDRESS_MIRRORED_REPEAT))) { continue; } for (int filt_mod_num = 0; filt_mod_num < ARRAY_SIZE(filter_mode_values); filt_mod_num++) { int err = test_sampler_params(deviceID, context, is_compatibility, norm_coord_num, addr_mod_num, filt_mod_num); test_error(err, "testing clGetSamplerInfo params failed"); } } } return 0; } int test_get_sampler_info(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements) { int error; PASSIVE_REQUIRE_IMAGE_SUPPORT(deviceID) error = get_sampler_info_params(deviceID, context, false); test_error(error, "Test Failed"); return 0; } int test_get_sampler_info_compatibility(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements) { int error; PASSIVE_REQUIRE_IMAGE_SUPPORT(deviceID) error = get_sampler_info_params(deviceID, context, true); test_error(error, "Test Failed"); return 0; } template int command_queue_param_test(cl_command_queue queue, cl_command_queue_info param_name, T expected, const char *name) { size_t size; T val; int error = clGetCommandQueueInfo(queue, param_name, sizeof(val), &val, &size); test_error(error, "Unable to get command queue info"); if (val != expected) { test_fail("ERROR: Command queue %s did not validate!\n", name); } if (size != sizeof(val)) { test_fail("ERROR: Returned size of command queue %s does not validate! " "(expected %d, got %d)\n", name, (int)sizeof(val), (int)size); } return 0; } #define MIN_NUM_COMMAND_QUEUE_PROPERTIES 2 #define OOO_NUM_COMMAND_QUEUE_PROPERTIES 4 static cl_command_queue_properties property_options[] = { 0, CL_QUEUE_PROFILING_ENABLE, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, CL_QUEUE_PROFILING_ENABLE | CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, CL_QUEUE_ON_DEVICE | CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, CL_QUEUE_PROFILING_ENABLE | CL_QUEUE_ON_DEVICE | CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, CL_QUEUE_ON_DEVICE | CL_QUEUE_ON_DEVICE_DEFAULT | CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, CL_QUEUE_PROFILING_ENABLE | CL_QUEUE_ON_DEVICE | CL_QUEUE_ON_DEVICE_DEFAULT | CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE }; int check_get_command_queue_info_params(cl_device_id deviceID, cl_context context, bool is_compatibility) { int error; size_t size; cl_queue_properties host_queue_props, device_queue_props; cl_queue_properties queue_props[] = { CL_QUEUE_PROPERTIES, 0, 0 }; clGetDeviceInfo(deviceID, CL_DEVICE_QUEUE_ON_HOST_PROPERTIES, sizeof(host_queue_props), &host_queue_props, NULL); log_info("CL_DEVICE_QUEUE_ON_HOST_PROPERTIES is %d\n", (int)host_queue_props); clGetDeviceInfo(deviceID, CL_DEVICE_QUEUE_ON_DEVICE_PROPERTIES, sizeof(device_queue_props), &device_queue_props, NULL); log_info("CL_DEVICE_QUEUE_ON_HOST_PROPERTIES is %d\n", (int)device_queue_props); auto version = get_device_cl_version(deviceID); // Are on device queues supported bool on_device_supported = (version >= Version(2, 0) && version < Version(3, 0)) || (version >= Version(3, 0) && device_queue_props != 0); int num_test_options = MIN_NUM_COMMAND_QUEUE_PROPERTIES; if (host_queue_props & CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE) { // Test out-of-order queues properties if supported num_test_options = OOO_NUM_COMMAND_QUEUE_PROPERTIES; } if (on_device_supported && !is_compatibility) { // Test queue on device if supported (in this case out-of-order must // also be supported) num_test_options = ARRAY_SIZE(property_options); } for (int i = 0; i < num_test_options; i++) { queue_props[1] = property_options[i]; clCommandQueueWrapper queue; if (is_compatibility) { queue = clCreateCommandQueue(context, deviceID, queue_props[1], &error); test_error(error, "Unable to create command queue to test with"); } else { queue = clCreateCommandQueueWithProperties(context, deviceID, &queue_props[0], &error); test_error(error, "Unable to create command queue to test with"); } cl_uint refCount; error = clGetCommandQueueInfo(queue, CL_QUEUE_REFERENCE_COUNT, sizeof(refCount), &refCount, &size); test_error(error, "Unable to get command queue reference count"); test_assert_error(size == sizeof(refCount), "Returned size of command queue reference count does " "not validate!\n"); error = command_queue_param_test(queue, CL_QUEUE_CONTEXT, context, "context"); test_error(error, "param checking failed"); error = command_queue_param_test(queue, CL_QUEUE_DEVICE, deviceID, "deviceID"); test_error(error, "param checking failed"); error = command_queue_param_test(queue, CL_QUEUE_PROPERTIES, queue_props[1], "properties"); test_error(error, "param checking failed"); } return 0; } int test_get_command_queue_info(cl_device_id deviceID, cl_context context, cl_command_queue ignoreQueue, int num_elements) { int error = check_get_command_queue_info_params(deviceID, context, false); test_error(error, "Test Failed"); return 0; } int test_get_command_queue_info_compatibility(cl_device_id deviceID, cl_context context, cl_command_queue ignoreQueue, int num_elements) { int error = check_get_command_queue_info_params(deviceID, context, true); test_error(error, "Test Failed"); return 0; } int test_get_context_info(cl_device_id deviceID, cl_context context, cl_command_queue ignoreQueue, int num_elements) { int error; size_t size; cl_context_properties props; error = clGetContextInfo( context, CL_CONTEXT_PROPERTIES, sizeof( props ), &props, &size ); test_error( error, "Unable to get context props" ); if (size == 0) { // Valid size return 0; } else if (size == sizeof(cl_context_properties)) { // Data must be NULL if (props != 0) { log_error("ERROR: Returned properties is no NULL.\n"); return -1; } // Valid data and size return 0; } // Size was not 0 or 1 log_error( "ERROR: Returned size of context props is not valid! (expected 0 or %d, got %d)\n", (int)sizeof(cl_context_properties), (int)size ); return -1; } #define TEST_MEM_OBJECT_PARAM( mem, paramName, val, expected, name, type, cast ) \ error = clGetMemObjectInfo( mem, paramName, sizeof( val ), &val, &size ); \ test_error( error, "Unable to get mem object " name ); \ if( val != expected ) \ { \ log_error( "ERROR: Mem object " name " did not validate! (expected " type ", got " type ")\n", (cast)(expected), (cast)val ); \ return -1; \ } \ if( size != sizeof( val ) ) \ { \ log_error( "ERROR: Returned size of mem object " name " does not validate! (expected %d, got %d)\n", (int)sizeof( val ), (int)size ); \ return -1; \ } void CL_CALLBACK mem_obj_destructor_callback( cl_mem, void *data ) { free( data ); } // All possible combinations of valid cl_mem_flags. static cl_mem_flags all_flags[16] = { 0, CL_MEM_READ_WRITE, CL_MEM_READ_ONLY, CL_MEM_WRITE_ONLY, CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, CL_MEM_WRITE_ONLY | CL_MEM_COPY_HOST_PTR, CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR, CL_MEM_READ_ONLY | CL_MEM_ALLOC_HOST_PTR, CL_MEM_WRITE_ONLY | CL_MEM_ALLOC_HOST_PTR, CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR | CL_MEM_COPY_HOST_PTR, CL_MEM_READ_ONLY | CL_MEM_ALLOC_HOST_PTR | CL_MEM_COPY_HOST_PTR, CL_MEM_WRITE_ONLY | CL_MEM_ALLOC_HOST_PTR | CL_MEM_COPY_HOST_PTR, CL_MEM_READ_WRITE | CL_MEM_USE_HOST_PTR, CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR, CL_MEM_WRITE_ONLY | CL_MEM_USE_HOST_PTR, }; #define TEST_DEVICE_PARAM( device, paramName, val, name, type, cast ) \ error = clGetDeviceInfo( device, paramName, sizeof( val ), &val, &size ); \ test_error( error, "Unable to get device " name ); \ if( size != sizeof( val ) ) \ { \ log_error( "ERROR: Returned size of device " name " does not validate! (expected %d, got %d)\n", (int)sizeof( val ), (int)size ); \ return -1; \ } \ log_info( "\tReported device " name " : " type "\n", (cast)val ); #define TEST_DEVICE_PARAM_MEM( device, paramName, val, name, type, div ) \ error = clGetDeviceInfo( device, paramName, sizeof( val ), &val, &size ); \ test_error( error, "Unable to get device " name ); \ if( size != sizeof( val ) ) \ { \ log_error( "ERROR: Returned size of device " name " does not validate! (expected %d, got %d)\n", (int)sizeof( val ), (int)size ); \ return -1; \ } \ log_info( "\tReported device " name " : " type "\n", (int)( val / div ) ); int test_get_device_info(cl_device_id deviceID, cl_context context, cl_command_queue ignoreQueue, int num_elements) { int error; size_t size; cl_uint vendorID; TEST_DEVICE_PARAM( deviceID, CL_DEVICE_VENDOR_ID, vendorID, "vendor ID", "0x%08x", int ) char extensions[ 10240 ]; error = clGetDeviceInfo( deviceID, CL_DEVICE_EXTENSIONS, sizeof( extensions ), &extensions, &size ); test_error( error, "Unable to get device extensions" ); if( size != strlen( extensions ) + 1 ) { log_error( "ERROR: Returned size of device extensions does not validate! (expected %d, got %d)\n", (int)( strlen( extensions ) + 1 ), (int)size ); return -1; } log_info( "\tReported device extensions: %s \n", extensions ); cl_uint preferred; TEST_DEVICE_PARAM( deviceID, CL_DEVICE_PREFERRED_VECTOR_WIDTH_CHAR, preferred, "preferred vector char width", "%d", int ) TEST_DEVICE_PARAM( deviceID, CL_DEVICE_PREFERRED_VECTOR_WIDTH_SHORT, preferred, "preferred vector short width", "%d", int ) TEST_DEVICE_PARAM( deviceID, CL_DEVICE_PREFERRED_VECTOR_WIDTH_INT, preferred, "preferred vector int width", "%d", int ) TEST_DEVICE_PARAM( deviceID, CL_DEVICE_PREFERRED_VECTOR_WIDTH_LONG, preferred, "preferred vector long width", "%d", int ) TEST_DEVICE_PARAM( deviceID, CL_DEVICE_PREFERRED_VECTOR_WIDTH_FLOAT, preferred, "preferred vector float width", "%d", int ) TEST_DEVICE_PARAM( deviceID, CL_DEVICE_PREFERRED_VECTOR_WIDTH_DOUBLE, preferred, "preferred vector double width", "%d", int ) // Note that even if cl_khr_fp64, the preferred width for double can be non-zero. For example, vendors // extensions can support double but may not support cl_khr_fp64, which implies math library support. cl_uint baseAddrAlign; TEST_DEVICE_PARAM(deviceID, CL_DEVICE_MEM_BASE_ADDR_ALIGN, baseAddrAlign, "base address alignment", "%d bits", int) cl_uint maxDataAlign; TEST_DEVICE_PARAM( deviceID, CL_DEVICE_MIN_DATA_TYPE_ALIGN_SIZE, maxDataAlign, "min data type alignment", "%d bytes", int ) cl_device_mem_cache_type cacheType; error = clGetDeviceInfo( deviceID, CL_DEVICE_GLOBAL_MEM_CACHE_TYPE, sizeof( cacheType ), &cacheType, &size ); test_error( error, "Unable to get device global mem cache type" ); if( size != sizeof( cacheType ) ) { log_error( "ERROR: Returned size of device global mem cache type does not validate! (expected %d, got %d)\n", (int)sizeof( cacheType ), (int)size ); return -1; } const char *cacheTypeName = ( cacheType == CL_NONE ) ? "CL_NONE" : ( cacheType == CL_READ_ONLY_CACHE ) ? "CL_READ_ONLY_CACHE" : ( cacheType == CL_READ_WRITE_CACHE ) ? "CL_READ_WRITE_CACHE" : ""; log_info( "\tReported device global mem cache type: %s \n", cacheTypeName ); cl_uint cachelineSize; TEST_DEVICE_PARAM( deviceID, CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE, cachelineSize, "global mem cacheline size", "%d bytes", int ) cl_ulong cacheSize; TEST_DEVICE_PARAM_MEM( deviceID, CL_DEVICE_GLOBAL_MEM_CACHE_SIZE, cacheSize, "global mem cache size", "%d KB", 1024 ) cl_ulong memSize; TEST_DEVICE_PARAM_MEM( deviceID, CL_DEVICE_GLOBAL_MEM_SIZE, memSize, "global mem size", "%d MB", ( 1024 * 1024 ) ) cl_device_local_mem_type localMemType; error = clGetDeviceInfo( deviceID, CL_DEVICE_LOCAL_MEM_TYPE, sizeof( localMemType ), &localMemType, &size ); test_error( error, "Unable to get device local mem type" ); if( size != sizeof( cacheType ) ) { log_error( "ERROR: Returned size of device local mem type does not validate! (expected %d, got %d)\n", (int)sizeof( localMemType ), (int)size ); return -1; } const char *localMemTypeName = ( localMemType == CL_LOCAL ) ? "CL_LOCAL" : ( cacheType == CL_GLOBAL ) ? "CL_GLOBAL" : ""; log_info( "\tReported device local mem type: %s \n", localMemTypeName ); cl_bool errSupport; TEST_DEVICE_PARAM( deviceID, CL_DEVICE_ERROR_CORRECTION_SUPPORT, errSupport, "error correction support", "%d", int ) size_t timerResolution; TEST_DEVICE_PARAM( deviceID, CL_DEVICE_PROFILING_TIMER_RESOLUTION, timerResolution, "profiling timer resolution", "%ld nanoseconds", long ) cl_bool endian; TEST_DEVICE_PARAM( deviceID, CL_DEVICE_ENDIAN_LITTLE, endian, "little endian flag", "%d", int ) cl_bool avail; TEST_DEVICE_PARAM( deviceID, CL_DEVICE_AVAILABLE, avail, "available flag", "%d", int ) cl_bool compilerAvail; TEST_DEVICE_PARAM( deviceID, CL_DEVICE_COMPILER_AVAILABLE, compilerAvail, "compiler available flag", "%d", int ) char profile[ 1024 ]; error = clGetDeviceInfo( deviceID, CL_DEVICE_PROFILE, sizeof( profile ), &profile, &size ); test_error( error, "Unable to get device profile" ); if( size != strlen( profile ) + 1 ) { log_error( "ERROR: Returned size of device profile does not validate! (expected %d, got %d)\n", (int)( strlen( profile ) + 1 ), (int)size ); return -1; } if( strcmp( profile, "FULL_PROFILE" ) != 0 && strcmp( profile, "EMBEDDED_PROFILE" ) != 0 ) { log_error( "ERROR: Returned profile of device not FULL or EMBEDDED as required by OpenCL 1.2! (Returned %s)\n", profile ); return -1; } log_info( "\tReported device profile: %s \n", profile ); return 0; } static const char *sample_compile_size[2] = { "__kernel void sample_test(__global int *src, __global int *dst)\n" "{\n" " int tid = get_global_id(0);\n" " dst[tid] = src[tid];\n" "\n" "}\n", "__kernel __attribute__((reqd_work_group_size(%d,%d,%d))) void sample_test(__global int *src, __global int *dst)\n" "{\n" " int tid = get_global_id(0);\n" " dst[tid] = src[tid];\n" "\n" "}\n" }; int test_kernel_required_group_size(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements) { int error; size_t realSize; size_t kernel_max_workgroup_size; size_t global[] = {64,14,10}; size_t local[] = {0,0,0}; cl_uint max_dimensions; error = clGetDeviceInfo(deviceID, CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS, sizeof(max_dimensions), &max_dimensions, NULL); test_error(error, "clGetDeviceInfo failed for CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS"); log_info("Device reported CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS = %d.\n", (int)max_dimensions); { clProgramWrapper program; clKernelWrapper kernel; error = create_single_kernel_helper( context, &program, &kernel, 1, &sample_compile_size[ 0 ], "sample_test" ); if( error != 0 ) return error; error = clGetKernelWorkGroupInfo(kernel, deviceID, CL_KERNEL_WORK_GROUP_SIZE, sizeof(kernel_max_workgroup_size), &kernel_max_workgroup_size, NULL); test_error( error, "clGetKernelWorkGroupInfo failed for CL_KERNEL_WORK_GROUP_SIZE"); log_info("The CL_KERNEL_WORK_GROUP_SIZE for the kernel is %d.\n", (int)kernel_max_workgroup_size); size_t size[ 3 ]; error = clGetKernelWorkGroupInfo( kernel, deviceID, CL_KERNEL_COMPILE_WORK_GROUP_SIZE, sizeof( size ), size, &realSize ); test_error( error, "Unable to get work group info" ); if( size[ 0 ] != 0 || size[ 1 ] != 0 || size[ 2 ] != 0 ) { log_error( "ERROR: Nonzero compile work group size returned for nonspecified size! (returned %d,%d,%d)\n", (int)size[0], (int)size[1], (int)size[2] ); return -1; } if( realSize != sizeof( size ) ) { log_error( "ERROR: Returned size of compile work group size not valid! (Expected %d, got %d)\n", (int)sizeof( size ), (int)realSize ); return -1; } // Determine some local dimensions to use for the test. if (max_dimensions == 1) { error = get_max_common_work_group_size(context, kernel, global[0], &local[0]); test_error( error, "get_max_common_work_group_size failed"); log_info("For global dimension %d, kernel will require local dimension %d.\n", (int)global[0], (int)local[0]); } else if (max_dimensions == 2) { error = get_max_common_2D_work_group_size(context, kernel, global, local); test_error( error, "get_max_common_2D_work_group_size failed"); log_info("For global dimension %d x %d, kernel will require local dimension %d x %d.\n", (int)global[0], (int)global[1], (int)local[0], (int)local[1]); } else { error = get_max_common_3D_work_group_size(context, kernel, global, local); test_error( error, "get_max_common_3D_work_group_size failed"); log_info("For global dimension %d x %d x %d, kernel will require local dimension %d x %d x %d.\n", (int)global[0], (int)global[1], (int)global[2], (int)local[0], (int)local[1], (int)local[2]); } } { clProgramWrapper program; clKernelWrapper kernel; clMemWrapper in, out; //char source[1024]; char *source = (char*)malloc(1024); source[0] = '\0'; sprintf(source, sample_compile_size[1], local[0], local[1], local[2]); error = create_single_kernel_helper( context, &program, &kernel, 1, (const char**)&source, "sample_test" ); if( error != 0 ) return error; size_t size[ 3 ]; error = clGetKernelWorkGroupInfo( kernel, deviceID, CL_KERNEL_COMPILE_WORK_GROUP_SIZE, sizeof( size ), size, &realSize ); test_error( error, "Unable to get work group info" ); if( size[ 0 ] != local[0] || size[ 1 ] != local[1] || size[ 2 ] != local[2] ) { log_error( "ERROR: Incorrect compile work group size returned for specified size! (returned %d,%d,%d, expected %d,%d,%d)\n", (int)size[0], (int)size[1], (int)size[2], (int)local[0], (int)local[1], (int)local[2]); return -1; } // Verify that the kernel will only execute with that size. in = clCreateBuffer(context, CL_MEM_READ_ONLY, sizeof(cl_int)*global[0], NULL, &error); test_error(error, "clCreateBuffer failed"); out = clCreateBuffer(context, CL_MEM_WRITE_ONLY, sizeof(cl_int)*global[0], NULL, &error); test_error(error, "clCreateBuffer failed"); error = clSetKernelArg(kernel, 0, sizeof(in), &in); test_error(error, "clSetKernelArg failed"); error = clSetKernelArg(kernel, 1, sizeof(out), &out); test_error(error, "clSetKernelArg failed"); error = clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global, local, 0, NULL, NULL); test_error(error, "clEnqueueNDRangeKernel failed"); error = clFinish(queue); test_error(error, "clFinish failed"); log_info("kernel_required_group_size may report spurious ERRORS in the conformance log.\n"); local[0]++; error = clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global, local, 0, NULL, NULL); if (error != CL_INVALID_WORK_GROUP_SIZE) { log_error("Incorrect error returned for executing a kernel with the wrong required local work group size. (used %d,%d,%d, required %d,%d,%d)\n", (int)local[0], (int)local[1], (int)local[2], (int)local[0]-1, (int)local[1], (int)local[2] ); print_error(error, "Expected: CL_INVALID_WORK_GROUP_SIZE."); return -1; } error = clFinish(queue); test_error(error, "clFinish failed"); if (max_dimensions == 1) { free(source); return 0; } local[0]--; local[1]++; error = clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global, local, 0, NULL, NULL); if (error != CL_INVALID_WORK_GROUP_SIZE) { log_error("Incorrect error returned for executing a kernel with the wrong required local work group size. (used %d,%d,%d, required %d,%d,%d)\n", (int)local[0], (int)local[1], (int)local[2], (int)local[0]-1, (int)local[1], (int)local[2]); print_error(error, "Expected: CL_INVALID_WORK_GROUP_SIZE."); return -1; } error = clFinish(queue); test_error(error, "clFinish failed"); if (max_dimensions == 2) { return 0; free(source); } local[1]--; local[2]++; error = clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global, local, 0, NULL, NULL); if (error != CL_INVALID_WORK_GROUP_SIZE) { log_error("Incorrect error returned for executing a kernel with the wrong required local work group size. (used %d,%d,%d, required %d,%d,%d)\n", (int)local[0], (int)local[1], (int)local[2], (int)local[0]-1, (int)local[1], (int)local[2]); print_error(error, "Expected: CL_INVALID_WORK_GROUP_SIZE."); return -1; } error = clFinish(queue); test_error(error, "clFinish failed"); free(source); } return 0; }