// Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include #include #include #include #include #include #include "bench/utils.h" #ifdef BENCHMARK_TENSORFLOW_LITE #include "flatbuffers/include/flatbuffers/flatbuffers.h" #include "tensorflow/lite/interpreter.h" #include "tensorflow/lite/kernels/register.h" #include "tensorflow/lite/model.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/version.h" #endif // BENCHMARK_TENSORFLOW_LITE static void xnnpack_ceiling_f32(benchmark::State& state) { const size_t batch_size = state.range(0); const size_t channels = state.range(1); std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(-10.0f, 10.0f), std::ref(rng)); std::vector input(batch_size * channels); std::vector output(batch_size * channels); std::generate(input.begin(), input.end(), std::ref(f32rng)); std::fill(output.begin(), output.end(), std::nanf("")); xnn_status status = xnn_initialize(nullptr /* allocator */); if (status != xnn_status_success) { state.SkipWithError("failed to initialize XNNPACK"); return; } xnn_operator_t ceiling_op = nullptr; status = xnn_create_ceiling_nc_f32( channels, channels /* input stride */, channels /* output stride */, 0 /* flags */, &ceiling_op); if (status != xnn_status_success || ceiling_op == nullptr) { state.SkipWithError("failed to create Ceiling operator"); return; } status = xnn_setup_ceiling_nc_f32( ceiling_op, batch_size, input.data(), output.data(), nullptr /* thread pool */); if (status != xnn_status_success) { state.SkipWithError("failed to setup Ceiling operator"); return; } for (auto _ : state) { status = xnn_run_operator(ceiling_op, nullptr /* thread pool */); if (status != xnn_status_success) { state.SkipWithError("failed to run Ceiling operator"); return; } } status = xnn_delete_operator(ceiling_op); if (status != xnn_status_success) { state.SkipWithError("failed to delete Ceiling operator"); return; } const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); if (cpu_frequency != 0) { state.counters["cpufreq"] = cpu_frequency; } const size_t elements_per_iteration = batch_size * channels; state.counters["elements"] = benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate); const size_t bytes_per_iteration = 2 * elements_per_iteration * sizeof(float); state.counters["bytes"] = benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); } #ifdef BENCHMARK_TENSORFLOW_LITE static void tflite_ceiling_f32(benchmark::State& state) { const size_t batch_size = state.range(0); const size_t channels = state.range(1); std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(-10.0f, 10.0f), std::ref(rng)); flatbuffers::FlatBufferBuilder builder; const flatbuffers::Offset operator_code = CreateOperatorCode(builder, tflite::BuiltinOperator_CEIL); const std::array, 1> buffers{{ tflite::CreateBuffer(builder, builder.CreateVector({})), }}; const std::array input_shape{{ static_cast(batch_size), static_cast(1 /* height */), static_cast(1 /* width */), static_cast(channels) }}; const std::array output_shape{{ static_cast(batch_size), static_cast(1 /* height */), static_cast(1 /* width */), static_cast(channels) }}; const std::array, 2> tensors{{ tflite::CreateTensor(builder, builder.CreateVector(input_shape.data(), input_shape.size()), tflite::TensorType_FLOAT32), tflite::CreateTensor(builder, builder.CreateVector(output_shape.data(), output_shape.size()), tflite::TensorType_FLOAT32), }}; const std::array op_inputs{{ 0 }}; const std::array op_outputs{{ 1 }}; flatbuffers::Offset op = tflite::CreateOperator( builder, 0 /* opcode_index */, builder.CreateVector(op_inputs.data(), op_inputs.size()), builder.CreateVector(op_outputs.data(), op_outputs.size())); const std::array graph_inputs{{ 0 }}; const std::array graph_outputs{{ 1 }}; const flatbuffers::Offset subgraph = tflite::CreateSubGraph( builder, builder.CreateVector(tensors.data(), tensors.size()), builder.CreateVector(graph_inputs.data(), graph_inputs.size()), builder.CreateVector(graph_outputs.data(), graph_outputs.size()), builder.CreateVector(&op, 1)); const flatbuffers::Offset model_buffer = tflite::CreateModel(builder, TFLITE_SCHEMA_VERSION, builder.CreateVector(&operator_code, 1), builder.CreateVector(&subgraph, 1), builder.CreateString("Ceil model"), builder.CreateVector(buffers.data(), buffers.size())); builder.Finish(model_buffer); const tflite::Model* model = tflite::GetModel(builder.GetBufferPointer()); tflite::ops::builtin::BuiltinOpResolver resolver; tflite::InterpreterBuilder interpreterBuilder(model, resolver); std::unique_ptr interpreter; if (interpreterBuilder(&interpreter) != kTfLiteOk) { state.SkipWithError("failed to create TFLite interpreter"); return; } if (interpreter == nullptr) { state.SkipWithError("TFLite interpreter is null"); return; } interpreter->SetNumThreads(1); if (interpreter->AllocateTensors() != kTfLiteOk) { state.SkipWithError("failed to allocate tensors"); return; } std::generate( interpreter->typed_tensor(0), interpreter->typed_tensor(0) + batch_size * channels, std::ref(f32rng)); for (auto _ : state) { if (interpreter->Invoke() != kTfLiteOk) { state.SkipWithError("failed to invoke TFLite interpreter"); return; } } const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); if (cpu_frequency != 0) { state.counters["cpufreq"] = cpu_frequency; } const size_t elements_per_iteration = batch_size * channels; state.counters["elements"] = benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate); const size_t bytes_per_iteration = 2 * elements_per_iteration * sizeof(float); state.counters["bytes"] = benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); interpreter.reset(); } #endif // BENCHMARK_TENSORFLOW_LITE static void CharacteristicArguments(benchmark::internal::Benchmark* b) { b->ArgNames({"N", "C"}); int32_t c = 16; for (int32_t n = 224; n >= 7; n /= 2) { b->Args({n * n, c}); c *= 2; } } BENCHMARK(xnnpack_ceiling_f32)->Apply(CharacteristicArguments)->UseRealTime(); #ifdef BENCHMARK_TENSORFLOW_LITE BENCHMARK(tflite_ceiling_f32)->Apply(CharacteristicArguments)->UseRealTime(); #endif // BENCHMARK_TENSORFLOW_LITE #ifndef XNNPACK_BENCHMARK_NO_MAIN BENCHMARK_MAIN(); #endif