// Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include #include #include #include #include "bench/conv.h" #include "bench/utils.h" #include #include #include #include #include #include #include static void Im2ColGEMMBenchmark(benchmark::State& state, xnn_f32_gemm_minmax_ukernel_function f32_gemm, uint32_t mr, uint32_t nr, uint32_t kr, uint32_t sr, benchmark::utils::IsaCheckFunction isa_check = nullptr) { if (isa_check && !isa_check(state)) { return; } const size_t input_height = state.range(0); const size_t input_width = state.range(1); const size_t kernel_height = state.range(2); const size_t kernel_width = state.range(3); const size_t kernel_size = kernel_height * kernel_width; const size_t padding_height = state.range(4); const size_t padding_width = state.range(5); const size_t subsampling = state.range(6); const size_t dilation = state.range(7); const size_t group_input_channels = state.range(8); const size_t group_output_channels = state.range(9); std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(0.0f, 1.0f), std::ref(rng)); const size_t effective_kernel_height = (kernel_height - 1) * dilation + 1; const size_t effective_kernel_width = (kernel_width - 1) * dilation + 1; const size_t padding_left = padding_width / 2; const size_t padding_top = padding_height / 2; const size_t output_height = (input_height + padding_height - effective_kernel_height) / subsampling + 1; const size_t output_width = (input_width + padding_width - effective_kernel_width) / subsampling + 1; const size_t output_size = output_height * output_width; const size_t nc_stride = benchmark::utils::RoundUp(group_output_channels, nr); const size_t kc_stride = benchmark::utils::RoundUp(group_input_channels, kr); std::vector a(input_height * input_width * group_input_channels); std::generate(a.begin(), a.end(), std::ref(f32rng)); std::vector k(group_output_channels * kernel_height * kernel_width * group_input_channels); std::generate(k.begin(), k.end(), std::ref(f32rng)); std::vector b(group_output_channels); std::generate(b.begin(), b.end(), std::ref(f32rng)); const size_t w_elements = (kernel_size * kc_stride + 1) * nc_stride; const size_t c_elements = output_size * group_output_channels; const size_t num_buffers = 1 + benchmark::utils::DivideRoundUp(benchmark::utils::GetMaxCacheSize(), sizeof(float) * (w_elements + c_elements)); std::vector> w(w_elements * num_buffers); std::fill(w.begin(), w.end(), 0.0f); xnn_pack_f32_gemm_goi_w(1 /* groups */, group_output_channels, group_input_channels * kernel_size, nr, kr, sr, k.data(), b.data(), w.data(), nullptr); for (size_t n = 1; n < num_buffers; n++) { std::copy(w.cbegin(), w.cbegin() + w_elements, w.begin() + n * w_elements); } std::vector im2col_buffer(output_size * group_input_channels * kernel_size * group_output_channels); std::vector c(c_elements * num_buffers); std::fill(c.begin(), c.end(), std::nanf("")); xnn_f32_minmax_params params = xnn_init_f32_minmax_params(-std::numeric_limits::infinity(), +std::numeric_limits::infinity()); size_t buffer_index = 0; for (auto _ : state) { state.PauseTiming(); benchmark::utils::PrefetchToL1(a.data(), a.size() * sizeof(float)); buffer_index = (buffer_index + 1) % num_buffers; state.ResumeTiming(); const float* inputData = a.data(); if (kernel_size != 1 || subsampling != 1) { xnn_im2col_conv2d( output_height, output_width, kernel_height, kernel_width, subsampling, subsampling, dilation, dilation, input_width, padding_top, padding_left, group_input_channels * sizeof(float) /* input channels */, group_input_channels * sizeof(float) /* input stride */, a.data(), im2col_buffer.data()); inputData = im2col_buffer.data(); } for (uint32_t m = 0; m < output_size; m += mr) { const uint32_t mb = min(output_size - m, mr); for (uint32_t n = 0; n < group_output_channels; n += nr) { const uint32_t nb = min(group_output_channels - n, nr); f32_gemm( mb, nb, kernel_size * group_input_channels * sizeof(float), inputData + m * kernel_size * group_input_channels, kernel_size * group_input_channels * sizeof(float), w.data() + (buffer_index * nc_stride + n) * (kernel_size * kc_stride + 1), c.data() + (buffer_index * output_size + m) * group_output_channels + n, group_output_channels * sizeof(float), nr * sizeof(float), ¶ms); } } } const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); if (cpu_frequency != 0) { state.counters["cpufreq"] = cpu_frequency; } state.counters["FLOPS"] = benchmark::Counter( uint64_t(state.iterations()) * 2 * output_height * output_width * group_input_channels * group_output_channels * kernel_height * kernel_width, benchmark::Counter::kIsRate); } #if XNN_ARCH_ARM64 && XNN_ENABLE_ASSEMBLY static void f32_gemm_4x8__aarch64_neonfma_cortex_a75(benchmark::State& state, const char* net) { Im2ColGEMMBenchmark(state, xnn_f32_gemm_minmax_ukernel_4x8__aarch64_neonfma_cortex_a75, 4, 8, 1, 1); } BENCHMARK_CONV(f32_gemm_4x8__aarch64_neonfma_cortex_a75) #endif // XNN_ARCH_ARM64 static void f32_gemm_2x4__scalar(benchmark::State& state, const char* net) { Im2ColGEMMBenchmark(state, xnn_f32_gemm_minmax_ukernel_2x4__scalar, 2, 4, 1, 1); } static void f32_gemm_4x4__scalar(benchmark::State& state, const char* net) { Im2ColGEMMBenchmark(state, xnn_f32_gemm_minmax_ukernel_4x4__scalar, 4, 4, 1, 1); } BENCHMARK_CONV(f32_gemm_2x4__scalar) BENCHMARK_CONV(f32_gemm_4x4__scalar) #ifndef XNNPACK_BENCHMARK_NO_MAIN BENCHMARK_MAIN(); #endif