// Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include #include #include #include #include #include "bench/utils.h" #ifdef BENCHMARK_TENSORFLOW_LITE #include "flatbuffers/include/flatbuffers/flatbuffers.h" #include "tensorflow/lite/interpreter.h" #include "tensorflow/lite/kernels/register.h" #include "tensorflow/lite/model.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/version.h" #endif // BENCHMARK_TENSORFLOW_LITE void xnnpack_prelu_f32(benchmark::State& state, const char* net) { const size_t batch_size = state.range(0); const size_t height = state.range(1); const size_t width = state.range(2); const size_t channels = state.range(3); std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32irng = std::bind(std::uniform_real_distribution(-1.0f, 1.0f), std::ref(rng)); auto f32wrng = std::bind(std::uniform_real_distribution(0.25f, 0.75f), std::ref(rng)); std::vector input(batch_size * height * width * channels + XNN_EXTRA_BYTES / sizeof(float)); std::generate(input.begin(), input.end(), std::ref(f32irng)); std::vector slope(channels); std::generate(slope.begin(), slope.end(), std::ref(f32wrng)); std::vector output(batch_size * height * width * channels); xnn_status status = xnn_initialize(nullptr /* allocator */); if (status != xnn_status_success) { state.SkipWithError("failed to initialize XNNPACK"); return; } xnn_operator_t prelu_op = nullptr; status = xnn_create_prelu_nc_f32( channels, channels /* input stride */, channels /* output stride */, slope.data(), 0 /* flags */, &prelu_op); if (status != xnn_status_success) { state.SkipWithError("failed to create FP32 PReLU operator"); return; } status = xnn_setup_prelu_nc_f32( prelu_op, batch_size * height * width, input.data(), output.data(), nullptr /* thread pool */); if (status != xnn_status_success) { state.SkipWithError("failed to setup FP32 PReLU operator"); return; } for (auto _ : state) { status = xnn_run_operator(prelu_op, nullptr /* thread pool */); if (status != xnn_status_success) { state.SkipWithError("failed to run FP32 PReLU operator"); return; } } status = xnn_delete_operator(prelu_op); if (status != xnn_status_success) { state.SkipWithError("failed to delete FP32 PReLU operator"); return; } prelu_op = nullptr; const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); if (cpu_frequency != 0) { state.counters["cpufreq"] = cpu_frequency; } const size_t elements_per_iteration = batch_size * height * width * channels; state.counters["elements"] = benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate); const size_t bytes_per_iteration = (2 * elements_per_iteration + channels) * sizeof(float); state.counters["bytes"] = benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); } #ifdef BENCHMARK_TENSORFLOW_LITE void tflite_prelu_f32(benchmark::State& state, const char* net) { const size_t batch_size = state.range(0); const size_t height = state.range(1); const size_t width = state.range(2); const size_t channels = state.range(3); std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32irng = std::bind(std::uniform_real_distribution(-1.0f, 1.0f), std::ref(rng)); auto f32wrng = std::bind(std::uniform_real_distribution(0.25f, 0.75f), std::ref(rng)); std::vector slope(channels); std::generate(slope.begin(), slope.end(), std::ref(f32wrng)); flatbuffers::FlatBufferBuilder builder; flatbuffers::Offset operator_code = CreateOperatorCode(builder, tflite::BuiltinOperator_PRELU); flatbuffers::Offset buffers[2] = { tflite::CreateBuffer(builder, builder.CreateVector({})), tflite::CreateBuffer(builder, builder.CreateVector( reinterpret_cast(slope.data()), sizeof(float) * slope.size())), }; const int32_t input_shape[4] = { static_cast(batch_size), static_cast(height), static_cast(width), static_cast(channels) }; const int32_t output_shape[4] = { static_cast(batch_size), static_cast(height), static_cast(width), static_cast(channels) }; const int32_t slope_shape[1] = { static_cast(channels) }; flatbuffers::Offset tensors[3] = { tflite::CreateTensor(builder, builder.CreateVector(input_shape, 4), tflite::TensorType_FLOAT32), tflite::CreateTensor(builder, builder.CreateVector(slope_shape, 1), tflite::TensorType_FLOAT32, 1 /* buffer id */), tflite::CreateTensor(builder, builder.CreateVector(output_shape, 4), tflite::TensorType_FLOAT32), }; const int32_t op_inputs[2] = { 0, 1 }; const int32_t op_outputs[1] = { 2 }; flatbuffers::Offset op = tflite::CreateOperator( builder, 0 /* opcode_index */, builder.CreateVector(op_inputs, 2), builder.CreateVector(op_outputs, 1)); const int32_t graph_inputs[1] = { 0 }; const int32_t graph_outputs[1] = { 2 }; flatbuffers::Offset subgraph = tflite::CreateSubGraph( builder, builder.CreateVector(tensors, 3), builder.CreateVector(graph_inputs, 1), builder.CreateVector(graph_outputs, 1), builder.CreateVector(&op, 1)); flatbuffers::Offset description = builder.CreateString("PReLU model"); flatbuffers::Offset model_buffer = tflite::CreateModel(builder, TFLITE_SCHEMA_VERSION, builder.CreateVector(&operator_code, 1), builder.CreateVector(&subgraph, 1), description, builder.CreateVector(buffers, 2)); builder.Finish(model_buffer); const tflite::Model* model = tflite::GetModel(builder.GetBufferPointer()); tflite::ops::builtin::BuiltinOpResolver resolver; tflite::InterpreterBuilder interpreterBuilder(model, resolver); std::unique_ptr interpreter; if (interpreterBuilder(&interpreter) != kTfLiteOk) { state.SkipWithError("failed to create TFLite interpreter"); return; } if (interpreter == nullptr) { state.SkipWithError("TFLite interpreter is null"); return; } interpreter->SetNumThreads(1); if (interpreter->AllocateTensors() != kTfLiteOk) { state.SkipWithError("failed to allocate tensors"); return; } std::generate( interpreter->typed_tensor(0), interpreter->typed_tensor(0) + batch_size * height * width * channels, std::ref(f32irng)); for (auto _ : state) { if (interpreter->Invoke() != kTfLiteOk) { state.SkipWithError("failed to invoke TFLite interpreter"); return; } } const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); if (cpu_frequency != 0) { state.counters["cpufreq"] = cpu_frequency; } const size_t elements_per_iteration = batch_size * height * width * channels; state.counters["elements"] = benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate); const size_t bytes_per_iteration = (2 * elements_per_iteration + channels) * sizeof(float); state.counters["bytes"] = benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); interpreter.reset(); } #endif // BENCHMARK_TENSORFLOW_LITE // Characteristic arguments for ImageNet classification models static void ImageNet(benchmark::internal::Benchmark* b) { b->ArgNames({"N", "H", "W", "C"}); int32_t c = 16; for (int32_t hw = 224 / 2; hw >= 7; hw /= 2) { b->Args({1, hw, hw, c}); b->Args({1, hw, hw, c * 2}); c *= 2; } } BENCHMARK_CAPTURE(xnnpack_prelu_f32, imagenet, "ImageNet 224x224")->Apply(ImageNet)->UseRealTime(); #ifdef BENCHMARK_TENSORFLOW_LITE BENCHMARK_CAPTURE(tflite_prelu_f32, imagenet, "ImageNet 224x224")->Apply(ImageNet)->UseRealTime(); #endif // BENCHMARK_TENSORFLOW_LITE #ifndef XNNPACK_BENCHMARK_NO_MAIN BENCHMARK_MAIN(); #endif