/*------------------------------------------------------------------------- * drawElements Base Portability Library * ------------------------------------- * * Copyright 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *//*! * \file * \brief 16-bit floating-point math. *//*--------------------------------------------------------------------*/ #include "deFloat16.h" DE_BEGIN_EXTERN_C deFloat16 deFloat32To16 (float val32) { deUint32 sign; int expotent; deUint32 mantissa; union { float f; deUint32 u; } x; x.f = val32; sign = (x.u >> 16u) & 0x00008000u; expotent = (int)((x.u >> 23u) & 0x000000ffu) - (127 - 15); mantissa = x.u & 0x007fffffu; if (expotent <= 0) { if (expotent < -10) { /* Rounds to zero. */ return (deFloat16) sign; } /* Converted to denormalized half, add leading 1 to significand. */ mantissa = mantissa | 0x00800000u; /* Round mantissa to nearest (10+e) */ { deUint32 t = 14u - expotent; deUint32 a = (1u << (t - 1u)) - 1u; deUint32 b = (mantissa >> t) & 1u; mantissa = (mantissa + a + b) >> t; } return (deFloat16) (sign | mantissa); } else if (expotent == 0xff - (127 - 15)) { if (mantissa == 0u) { /* InF */ return (deFloat16) (sign | 0x7c00u); } else { /* NaN */ mantissa >>= 13u; return (deFloat16) (sign | 0x7c00u | mantissa | (mantissa == 0u)); } } else { /* Normalized float. */ mantissa = mantissa + 0x00000fffu + ((mantissa >> 13u) & 1u); if (mantissa & 0x00800000u) { /* Overflow in mantissa. */ mantissa = 0u; expotent += 1; } if (expotent > 30) { /* \todo [pyry] Cause hw fp overflow */ return (deFloat16) (sign | 0x7c00u); } return (deFloat16) (sign | ((deUint32)expotent << 10u) | (mantissa >> 13u)); } } deFloat16 deFloat64To16 (double val64) { deUint64 sign; long expotent; deUint64 mantissa; union { double f; deUint64 u; } x; x.f = val64; sign = (x.u >> 48u) & 0x00008000u; expotent = (long int)((x.u >> 52u) & 0x000007ffu) - (1023 - 15); mantissa = x.u & 0x00fffffffffffffu; if (expotent <= 0) { if (expotent < -10) { /* Rounds to zero. */ return (deFloat16) sign; } /* Converted to denormalized half, add leading 1 to significand. */ mantissa = mantissa | 0x0010000000000000u; /* Round mantissa to nearest (10+e) */ { deUint64 t = 43u - expotent; deUint64 a = (1u << (t - 1u)) - 1u; deUint64 b = (mantissa >> t) & 1u; mantissa = (mantissa + a + b) >> t; } return (deFloat16) (sign | mantissa); } else if (expotent == 0x7ff - (1023 - 15)) { if (mantissa == 0u) { /* InF */ return (deFloat16) (sign | 0x7c00u); } else { /* NaN */ mantissa >>= 42u; return (deFloat16) (sign | 0x7c00u | mantissa | (mantissa == 0u)); } } else { /* Normalized float. */ mantissa = mantissa + 0x000001ffffffffffu + ((mantissa >> 42u) & 1u); if (mantissa & 0x010000000000000u) { /* Overflow in mantissa. */ mantissa = 0u; expotent += 1; } if (expotent > 30) { return (deFloat16) (sign | 0x7c00u); } return (deFloat16) (sign | ((deUint32)expotent << 10u) | (mantissa >> 13u)); } } /*--------------------------------------------------------------------*//*! * \brief Round the given number `val` to nearest even by discarding * the last `numBitsToDiscard` bits. * \param val value to round * \param numBitsToDiscard number of (least significant) bits to discard * \return The rounded value with the last `numBitsToDiscard` removed *//*--------------------------------------------------------------------*/ static deUint32 roundToNearestEven (deUint32 val, const deUint32 numBitsToDiscard) { const deUint32 lastBits = val & ((1 << numBitsToDiscard) - 1); const deUint32 headBit = val & (1 << (numBitsToDiscard - 1)); DE_ASSERT(numBitsToDiscard > 0 && numBitsToDiscard < 32); /* Make sure no overflow. */ val >>= numBitsToDiscard; if (headBit == 0) { return val; } else if (headBit == lastBits) { if ((val & 0x1) == 0x1) { return val + 1; } else { return val; } } else { return val + 1; } } deFloat16 deFloat32To16Round (float val32, deRoundingMode mode) { union { float f; /* Interpret as 32-bit float */ deUint32 u; /* Interpret as 32-bit unsigned integer */ } x; deUint32 sign; /* sign : 0000 0000 0000 0000 X000 0000 0000 0000 */ deUint32 exp32; /* exp32: biased exponent for 32-bit floats */ int exp16; /* exp16: biased exponent for 16-bit floats */ deUint32 mantissa; /* We only support these two rounding modes for now */ DE_ASSERT(mode == DE_ROUNDINGMODE_TO_ZERO || mode == DE_ROUNDINGMODE_TO_NEAREST_EVEN); x.f = val32; sign = (x.u >> 16u) & 0x00008000u; exp32 = (x.u >> 23u) & 0x000000ffu; exp16 = (int) (exp32) - 127 + 15; /* 15/127: exponent bias for 16-bit/32-bit floats */ mantissa = x.u & 0x007fffffu; /* Case: zero and denormalized floats */ if (exp32 == 0) { /* Denormalized floats are < 2^(1-127), not representable in 16-bit floats, rounding to zero. */ return (deFloat16) sign; } /* Case: Inf and NaN */ else if (exp32 == 0x000000ffu) { if (mantissa == 0u) { /* Inf */ return (deFloat16) (sign | 0x7c00u); } else { /* NaN */ mantissa >>= 13u; /* 16-bit floats has 10-bit for mantissa, 13-bit less than 32-bit floats. */ /* Make sure we don't turn NaN into zero by | (mantissa == 0). */ return (deFloat16) (sign | 0x7c00u | mantissa | (mantissa == 0u)); } } /* The following are cases for normalized floats. * * * If exp16 is less than 0, we are experiencing underflow for the exponent. To encode this underflowed exponent, * we can only shift the mantissa further right. * The real exponent is exp16 - 15. A denormalized 16-bit float can represent -14 via its exponent. * Note that the most significant bit in the mantissa of a denormalized float is already -1 as for exponent. * So, we just need to right shift the mantissa -exp16 bits. * * If exp16 is 0, mantissa shifting requirement is similar to the above. * * If exp16 is greater than 30 (0b11110), we are experiencing overflow for the exponent of 16-bit normalized floats. */ /* Case: normalized floats -> zero */ else if (exp16 < -10) { /* 16-bit floats have only 10 bits for mantissa. Minimal 16-bit denormalized float is (2^-10) * (2^-14). */ /* Expecting a number < (2^-10) * (2^-14) here, not representable, round to zero. */ return (deFloat16) sign; } /* Case: normalized floats -> zero and denormalized halfs */ else if (exp16 <= 0) { /* Add the implicit leading 1 in mormalized float to mantissa. */ mantissa |= 0x00800000u; /* We have a (23 + 1)-bit mantissa, but 16-bit floats only expect 10-bit mantissa. * Need to discard the last 14-bits considering rounding mode. * We also need to shift right -exp16 bits to encode the underflowed exponent. */ if (mode == DE_ROUNDINGMODE_TO_ZERO) { mantissa >>= (14 - exp16); } else { /* mantissa in the above may exceed 10-bits, in which case overflow happens. * The overflowed bit is automatically carried to exponent then. */ mantissa = roundToNearestEven(mantissa, 14 - exp16); } return (deFloat16) (sign | mantissa); } /* Case: normalized floats -> normalized floats */ else if (exp16 <= 30) { if (mode == DE_ROUNDINGMODE_TO_ZERO) { return (deFloat16) (sign | ((deUint32)exp16 << 10u) | (mantissa >> 13u)); } else { mantissa = roundToNearestEven(mantissa, 13); /* Handle overflow. exp16 may overflow (and become Inf) itself, but that's correct. */ exp16 = (exp16 << 10u) + (mantissa & (1 << 10)); mantissa &= (1u << 10) - 1; return (deFloat16) (sign | ((deUint32) exp16) | mantissa); } } /* Case: normalized floats (too large to be representable as 16-bit floats) */ else { /* According to IEEE Std 754-2008 Section 7.4, * * roundTiesToEven and roundTiesToAway carry all overflows to Inf with the sign * of the intermediate result. * * roundTowardZero carries all overflows to the format's largest finite number * with the sign of the intermediate result. */ if (mode == DE_ROUNDINGMODE_TO_ZERO) { return (deFloat16) (sign | 0x7bffu); /* 111 1011 1111 1111 */ } else { return (deFloat16) (sign | (0x1f << 10)); } } /* Make compiler happy */ return (deFloat16) 0; } /*--------------------------------------------------------------------*//*! * \brief Round the given number `val` to nearest even by discarding * the last `numBitsToDiscard` bits. * \param val value to round * \param numBitsToDiscard number of (least significant) bits to discard * \return The rounded value with the last `numBitsToDiscard` removed *//*--------------------------------------------------------------------*/ static deUint64 roundToNearestEven64 (deUint64 val, const deUint64 numBitsToDiscard) { const deUint64 lastBits = val & (((deUint64)1 << numBitsToDiscard) - 1); const deUint64 headBit = val & ((deUint64)1 << (numBitsToDiscard - 1)); DE_ASSERT(numBitsToDiscard > 0 && numBitsToDiscard < 64); /* Make sure no overflow. */ val >>= numBitsToDiscard; if (headBit == 0) { return val; } else if (headBit == lastBits) { if ((val & 0x1) == 0x1) { return val + 1; } else { return val; } } else { return val + 1; } } deFloat16 deFloat64To16Round (double val64, deRoundingMode mode) { union { double f; /* Interpret as 64-bit float */ deUint64 u; /* Interpret as 64-bit unsigned integer */ } x; deUint64 sign; /* sign : 0000 0000 0000 0000 X000 0000 0000 0000 */ deUint64 exp64; /* exp32: biased exponent for 64-bit floats */ int exp16; /* exp16: biased exponent for 16-bit floats */ deUint64 mantissa; /* We only support these two rounding modes for now */ DE_ASSERT(mode == DE_ROUNDINGMODE_TO_ZERO || mode == DE_ROUNDINGMODE_TO_NEAREST_EVEN); x.f = val64; sign = (x.u >> 48u) & 0x00008000u; exp64 = (x.u >> 52u) & 0x000007ffu; exp16 = (int) (exp64) - 1023 + 15; /* 15/127: exponent bias for 16-bit/32-bit floats */ mantissa = x.u & 0x00fffffffffffffu; /* Case: zero and denormalized floats */ if (exp64 == 0) { /* Denormalized floats are < 2^(1-1023), not representable in 16-bit floats, rounding to zero. */ return (deFloat16) sign; } /* Case: Inf and NaN */ else if (exp64 == 0x000007ffu) { if (mantissa == 0u) { /* Inf */ return (deFloat16) (sign | 0x7c00u); } else { /* NaN */ mantissa >>= 42u; /* 16-bit floats has 10-bit for mantissa, 42-bit less than 64-bit floats. */ /* Make sure we don't turn NaN into zero by | (mantissa == 0). */ return (deFloat16) (sign | 0x7c00u | mantissa | (mantissa == 0u)); } } /* The following are cases for normalized floats. * * * If exp16 is less than 0, we are experiencing underflow for the exponent. To encode this underflowed exponent, * we can only shift the mantissa further right. * The real exponent is exp16 - 15. A denormalized 16-bit float can represent -14 via its exponent. * Note that the most significant bit in the mantissa of a denormalized float is already -1 as for exponent. * So, we just need to right shift the mantissa -exp16 bits. * * If exp16 is 0, mantissa shifting requirement is similar to the above. * * If exp16 is greater than 30 (0b11110), we are experiencing overflow for the exponent of 16-bit normalized floats. */ /* Case: normalized floats -> zero */ else if (exp16 < -10) { /* 16-bit floats have only 10 bits for mantissa. Minimal 16-bit denormalized float is (2^-10) * (2^-14). */ /* Expecting a number < (2^-10) * (2^-14) here, not representable, round to zero. */ return (deFloat16) sign; } /* Case: normalized floats -> zero and denormalized halfs */ else if (exp16 <= 0) { /* Add the implicit leading 1 in mormalized float to mantissa. */ mantissa |= 0x0010000000000000u; /* We have a (23 + 1)-bit mantissa, but 16-bit floats only expect 10-bit mantissa. * Need to discard the last 14-bits considering rounding mode. * We also need to shift right -exp16 bits to encode the underflowed exponent. */ if (mode == DE_ROUNDINGMODE_TO_ZERO) { mantissa >>= (43 - exp16); } else { /* mantissa in the above may exceed 10-bits, in which case overflow happens. * The overflowed bit is automatically carried to exponent then. */ mantissa = roundToNearestEven64(mantissa, 43 - exp16); } return (deFloat16) (sign | mantissa); } /* Case: normalized floats -> normalized floats */ else if (exp16 <= 30) { if (mode == DE_ROUNDINGMODE_TO_ZERO) { return (deFloat16) (sign | ((deUint32)exp16 << 10u) | (mantissa >> 42u)); } else { mantissa = roundToNearestEven64(mantissa, 42); /* Handle overflow. exp16 may overflow (and become Inf) itself, but that's correct. */ exp16 = (exp16 << 10u) + (deFloat16)(mantissa & (1 << 10)); mantissa &= (1u << 10) - 1; return (deFloat16) (sign | ((deUint32) exp16) | mantissa); } } /* Case: normalized floats (too large to be representable as 16-bit floats) */ else { /* According to IEEE Std 754-2008 Section 7.4, * * roundTiesToEven and roundTiesToAway carry all overflows to Inf with the sign * of the intermediate result. * * roundTowardZero carries all overflows to the format's largest finite number * with the sign of the intermediate result. */ if (mode == DE_ROUNDINGMODE_TO_ZERO) { return (deFloat16) (sign | 0x7bffu); /* 111 1011 1111 1111 */ } else { return (deFloat16) (sign | (0x1f << 10)); } } /* Make compiler happy */ return (deFloat16) 0; } float deFloat16To32 (deFloat16 val16) { deUint32 sign; deUint32 expotent; deUint32 mantissa; union { float f; deUint32 u; } x; x.u = 0u; sign = ((deUint32)val16 >> 15u) & 0x00000001u; expotent = ((deUint32)val16 >> 10u) & 0x0000001fu; mantissa = (deUint32)val16 & 0x000003ffu; if (expotent == 0u) { if (mantissa == 0u) { /* +/- 0 */ x.u = sign << 31u; return x.f; } else { /* Denormalized, normalize it. */ while (!(mantissa & 0x00000400u)) { mantissa <<= 1u; expotent -= 1u; } expotent += 1u; mantissa &= ~0x00000400u; } } else if (expotent == 31u) { if (mantissa == 0u) { /* +/- InF */ x.u = (sign << 31u) | 0x7f800000u; return x.f; } else { /* +/- NaN */ x.u = (sign << 31u) | 0x7f800000u | (mantissa << 13u); return x.f; } } expotent = expotent + (127u - 15u); mantissa = mantissa << 13u; x.u = (sign << 31u) | (expotent << 23u) | mantissa; return x.f; } double deFloat16To64 (deFloat16 val16) { deUint64 sign; deUint64 expotent; deUint64 mantissa; union { double f; deUint64 u; } x; x.u = 0u; sign = ((deUint32)val16 >> 15u) & 0x00000001u; expotent = ((deUint32)val16 >> 10u) & 0x0000001fu; mantissa = (deUint32)val16 & 0x000003ffu; if (expotent == 0u) { if (mantissa == 0u) { /* +/- 0 */ x.u = sign << 63u; return x.f; } else { /* Denormalized, normalize it. */ while (!(mantissa & 0x00000400u)) { mantissa <<= 1u; expotent -= 1u; } expotent += 1u; mantissa &= ~0x00000400u; } } else if (expotent == 31u) { if (mantissa == 0u) { /* +/- InF */ x.u = (sign << 63u) | 0x7ff0000000000000u; return x.f; } else { /* +/- NaN */ x.u = (sign << 63u) | 0x7ff0000000000000u | (mantissa << 42u); return x.f; } } expotent = expotent + (1023u - 15u); mantissa = mantissa << 42u; x.u = (sign << 63u) | (expotent << 52u) | mantissa; return x.f; } DE_END_EXTERN_C