// Copyright 2018 The Gemmlowp Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // kernel_msa.h: a collection of MSA optimized kernels. // Check in kernel_default.h which one(s) are actually used by default. // Others are mere experiments; they are still covered by tests // in case they might be useful some day. #ifndef GEMMLOWP_INTERNAL_KERNEL_MSA_H_ #define GEMMLOWP_INTERNAL_KERNEL_MSA_H_ #include "kernel.h" #include #include namespace gemmlowp { #ifdef GEMMLOWP_MSA // Some convenience macros to hide differences between MIPS32 and MIPS64. #ifdef GEMMLOWP_MIPS_64 #define GEMMLOWP_MIPS_XADDU "daddu" #define GEMMLOWP_MIPS_XADDIU "daddiu" #define GEMMLOWP_MIPS_XSLL "dsll" #else #define GEMMLOWP_MIPS_XADDU "addu" #define GEMMLOWP_MIPS_XADDIU "addiu" #define GEMMLOWP_MIPS_XSLL "sll" #endif // Our main GEMM kernel. struct MSA_Kernel12x8Depth2 : KernelBase { typedef KernelFormat, 3>, KernelSideFormat, 2> > Format; const char* Name() const override { return "MSA, 12x8, depth 2"; } // TODO(benoitjacob): reorder function arguments so dst comes last void Run(std::int32_t* dst_ptr, std::size_t dst_row_stride, std::size_t dst_col_stride, const std::uint8_t* lhs_ptr, const std::uint8_t* rhs_ptr, std::size_t start_depth, std::size_t run_depth) const override { ScopedProfilingLabel label("optimized kernel (MSA 12x8)"); // See comments above for why we need local numerical labels in our asm. #define GEMMLOWP_LABEL_CLEAR_ACCUMULATORS "1" #define GEMMLOWP_LABEL_BEFORE_LOOP "2" #define GEMMLOWP_LABEL_LOOP "3" #define GEMMLOWP_LABEL_AFTER_LOOP "4" assert(dst_row_stride == 1); asm volatile( // Multiply dst_col_stride by 4 == sizeof(int32) to use // it as a byte offset below. GEMMLOWP_MIPS_XSLL " %[dst_col_stride], %[dst_col_stride], 2\n" // Check if start_depth==0 to decide whether we will clear // accumulators or load existing accumulators. "beqz %[start_depth], " GEMMLOWP_LABEL_CLEAR_ACCUMULATORS "f\n" // Load accumulators (start_depth != 0). GEMMLOWP_MIPS_XADDU " $a0, %[dst_ptr], %[dst_col_stride]\n" "ld.w $w0, (0*16)(%[dst_ptr])\n" "ld.w $w4, (1*16)(%[dst_ptr])\n" "ld.w $w8, (2*16)(%[dst_ptr])\n" GEMMLOWP_MIPS_XADDU " $a1, $a0, %[dst_col_stride]\n" "ld.w $w1, (0*16)($a0)\n" "ld.w $w5, (1*16)($a0)\n" "ld.w $w9, (2*16)($a0)\n" GEMMLOWP_MIPS_XADDU " $a0, $a1, %[dst_col_stride]\n" "ld.w $w2, (0*16)($a1)\n" "ld.w $w6, (1*16)($a1)\n" "ld.w $w10, (2*16)($a1)\n" GEMMLOWP_MIPS_XADDU " $a1, $a0, %[dst_col_stride]\n" "ld.w $w3, (0*16)($a0)\n" "ld.w $w7, (1*16)($a0)\n" "ld.w $w11, (2*16)($a0)\n" GEMMLOWP_MIPS_XADDU " $a0, $a1, %[dst_col_stride]\n" "ld.w $w12, (0*16)($a1)\n" "ld.w $w16, (1*16)($a1)\n" "ld.w $w20, (2*16)($a1)\n" GEMMLOWP_MIPS_XADDU " $a1, $a0, %[dst_col_stride]\n" "ld.w $w13, (0*16)($a0)\n" "ld.w $w17, (1*16)($a0)\n" "ld.w $w21, (2*16)($a0)\n" GEMMLOWP_MIPS_XADDU " $a0, $a1, %[dst_col_stride]\n" "ld.w $w14, (0*16)($a1)\n" "ld.w $w18, (1*16)($a1)\n" "ld.w $w22, (2*16)($a1)\n" "ld.w $w15, (0*16)($a0)\n" "ld.w $w19, (1*16)($a0)\n" "ld.w $w23, (2*16)($a0)\n" "b " GEMMLOWP_LABEL_BEFORE_LOOP "f\n" GEMMLOWP_LABEL_CLEAR_ACCUMULATORS ":\n" // Clear accumulators (start_depth == 0). "ldi.w $w0, 0\n" "ldi.w $w4, 0\n" "ldi.w $w8, 0\n" "ldi.w $w1, 0\n" "ldi.w $w5, 0\n" "ldi.w $w9, 0\n" "ldi.w $w2, 0\n" "ldi.w $w6, 0\n" "ldi.w $w10, 0\n" "ldi.w $w3, 0\n" "ldi.w $w7, 0\n" "ldi.w $w11, 0\n" "ldi.w $w12, 0\n" "ldi.w $w16, 0\n" "ldi.w $w20, 0\n" "ldi.w $w13, 0\n" "ldi.w $w17, 0\n" "ldi.w $w21, 0\n" "ldi.w $w14, 0\n" "ldi.w $w18, 0\n" "ldi.w $w22, 0\n" "ldi.w $w15, 0\n" "ldi.w $w19, 0\n" "ldi.w $w23, 0\n" GEMMLOWP_LABEL_BEFORE_LOOP ":\n" GEMMLOWP_LABEL_LOOP ":\n" // Overview of register layout: // // A half of the 2 2x4 cells of Rhs is stored in 16bit in w28-w31 // (each register contains 4 replicas of a pair of elements). // A 12x2 block of 3 4x2 cells Lhs is stored in 16bit in w24-w26. // A 12x8 block of accumulators is stored in 32bit in w0-w23. // // +------+------+------+------+ // Rhs |w28 |w29 |w30 |w31 | // +------+------+------+------+ // // | | | | | // // Lhs | | | | | // // +---+ - - - - +------+------+------+------+ // |w24| |w0/12 |w1/13 |w2/14 |w3/15 | // |w24| |w0/12 |w1/13 |w2/14 |w3/15 | // |w24| |w0/12 |w1/13 |w2/14 |w3/15 | // |w24| |w0/12 |w1/13 |w2/14 |w3/15 | // +---+ - - - - +------+------+------+------+ // |w25| |w4/16 |w5/17 |w6/18 |w7/19 | // |w25| |w4/16 |w5/17 |w6/18 |w7/19 | // |w25| |w4/16 |w5/17 |w6/18 |w7/19 | // |w25| |w4/16 |w5/17 |w6/18 |w7/19 | // +---+ - - - - +------+------+------+------+ // |w26| |w8/20 |w9/21 |w10/22|w11/23| // |w26| |w8/20 |w9/21 |w10/22|w11/23| // |w26| |w8/20 |w9/21 |w10/22|w11/23| // |w26| |w8/20 |w9/21 |w10/22|w11/23| // +---+ - - - - +------+------+------+------+ // // Accumulators // Load 3 x 8 bytes of lhs[] with 2 16-byte overlapped loads. "ld.b $w24, 0(%[lhs_ptr])\n" "ld.b $w25, 8(%[lhs_ptr])\n" // Load 2 x 8 bytes of rhs[]. "ld.b $w27, 0(%[rhs_ptr])\n" // Zero-extend 8-bit elements of lhs[] to 16 bits. "ldi.b $w31, 0\n" "ilvr.b $w24, $w31, $w24\n" "ilvl.b $w26, $w31, $w25\n" "ilvr.b $w25, $w31, $w25\n" // First half of depths 0 and 1. // Zero-extend 8-bit elements of rhs[] to 16 bits. "ilvr.b $w31, $w31, $w27\n" // Make 4 replicas of every pair of rhs[] elements. "splati.w $w28, $w31[0]\n" "splati.w $w29, $w31[1]\n" "splati.w $w30, $w31[2]\n" "splati.w $w31, $w31[3]\n" // Dot-product-(and)-add doubles multiplicand width. "dpadd_u.w $w0, $w24, $w28\n" "dpadd_u.w $w4, $w25, $w28\n" "dpadd_u.w $w8, $w26, $w28\n" "dpadd_u.w $w1, $w24, $w29\n" "dpadd_u.w $w5, $w25, $w29\n" "dpadd_u.w $w9, $w26, $w29\n" "dpadd_u.w $w2, $w24, $w30\n" "dpadd_u.w $w6, $w25, $w30\n" "dpadd_u.w $w10, $w26, $w30\n" "dpadd_u.w $w3, $w24, $w31\n" "dpadd_u.w $w7, $w25, $w31\n" "dpadd_u.w $w11, $w26, $w31\n" // Second half of depths 0 and 1. // Zero-extend 8-bit elements of rhs[] to 16 bits. "ldi.b $w31, 0\n" "ilvl.b $w31, $w31, $w27\n" // Make 4 replicas of every pair of rhs[] elements. "splati.w $w28, $w31[0]\n" "splati.w $w29, $w31[1]\n" "splati.w $w30, $w31[2]\n" "splati.w $w31, $w31[3]\n" // Dot-product-(and)-add doubles multiplicand width. "dpadd_u.w $w12, $w24, $w28\n" "dpadd_u.w $w16, $w25, $w28\n" "dpadd_u.w $w20, $w26, $w28\n" "dpadd_u.w $w13, $w24, $w29\n" "dpadd_u.w $w17, $w25, $w29\n" "dpadd_u.w $w21, $w26, $w29\n" "dpadd_u.w $w14, $w24, $w30\n" "dpadd_u.w $w18, $w25, $w30\n" "dpadd_u.w $w22, $w26, $w30\n" "dpadd_u.w $w15, $w24, $w31\n" "dpadd_u.w $w19, $w25, $w31\n" "dpadd_u.w $w23, $w26, $w31\n" GEMMLOWP_MIPS_XADDIU " %[run_depth], -2\n" GEMMLOWP_MIPS_XADDIU " %[lhs_ptr], 24\n" GEMMLOWP_MIPS_XADDIU " %[rhs_ptr], 16\n" "bnez %[run_depth]," GEMMLOWP_LABEL_LOOP "b\n" GEMMLOWP_LABEL_AFTER_LOOP ":\n" // Store accumulators. GEMMLOWP_MIPS_XADDU " $a0, %[dst_ptr], %[dst_col_stride]\n" "st.w $w0, (0*16)(%[dst_ptr])\n" "st.w $w4, (1*16)(%[dst_ptr])\n" "st.w $w8, (2*16)(%[dst_ptr])\n" GEMMLOWP_MIPS_XADDU " $a1, $a0, %[dst_col_stride]\n" "st.w $w1, (0*16)($a0)\n" "st.w $w5, (1*16)($a0)\n" "st.w $w9, (2*16)($a0)\n" GEMMLOWP_MIPS_XADDU " $a0, $a1, %[dst_col_stride]\n" "st.w $w2, (0*16)($a1)\n" "st.w $w6, (1*16)($a1)\n" "st.w $w10, (2*16)($a1)\n" GEMMLOWP_MIPS_XADDU " $a1, $a0, %[dst_col_stride]\n" "st.w $w3, (0*16)($a0)\n" "st.w $w7, (1*16)($a0)\n" "st.w $w11, (2*16)($a0)\n" GEMMLOWP_MIPS_XADDU " $a0, $a1, %[dst_col_stride]\n" "st.w $w12, (0*16)($a1)\n" "st.w $w16, (1*16)($a1)\n" "st.w $w20, (2*16)($a1)\n" GEMMLOWP_MIPS_XADDU " $a1, $a0, %[dst_col_stride]\n" "st.w $w13, (0*16)($a0)\n" "st.w $w17, (1*16)($a0)\n" "st.w $w21, (2*16)($a0)\n" GEMMLOWP_MIPS_XADDU " $a0, $a1, %[dst_col_stride]\n" "st.w $w14, (0*16)($a1)\n" "st.w $w18, (1*16)($a1)\n" "st.w $w22, (2*16)($a1)\n" "st.w $w15, (0*16)($a0)\n" "st.w $w19, (1*16)($a0)\n" "st.w $w23, (2*16)($a0)\n" : // outputs [lhs_ptr] "+r"(lhs_ptr), [rhs_ptr] "+r"(rhs_ptr), [run_depth] "+r"(run_depth), [dst_col_stride] "+r"(dst_col_stride) : // inputs [dst_ptr] "r"(dst_ptr), [start_depth] "r"(start_depth) : // clobbers "memory", "a0", "a1", "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23", "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31"); #undef GEMMLOWP_LABEL_CLEAR_ACCUMULATORS #undef GEMMLOWP_LABEL_BEFORE_LOOP #undef GEMMLOWP_LABEL_LOOP #undef GEMMLOWP_LABEL_AFTER_LOOP } }; // Fast kernel operating on int8 operands. // It is assumed that one of the two int8 operands only takes values // in [-127, 127], while the other may freely range in [-128, 127]. // The issue with both operands taking the value -128 is that: // -128*-128 + -128*-128 == -32768 overflows int16. // Every other expression a*b + c*d, for any int8 a,b,c,d, fits in int16 // range. That is the basic idea of this kernel. struct MSA_GEMM_Int8Operands_LhsNonzero : KernelBase { typedef KernelFormat< KernelSideFormatInt8, 1>, KernelSideFormatInt8, 1> > Format; const char* Name() const override { return "MSA, 4x4, depth 16, accumulating two within signed int16"; } // TODO(benoitjacob): reorder function arguments so dst comes last void Run(std::int32_t* dst_ptr, std::size_t dst_row_stride, std::size_t dst_col_stride, const std::uint8_t* lhs_ptr, const std::uint8_t* rhs_ptr, std::size_t start_depth, std::size_t run_depth) const override { (void)dst_row_stride; #define GEMMLOWP_LABEL_AFTER_LOOP_LAST16 "1" #define GEMMLOWP_LABEL_LOOP "2" #define GEMMLOWP_LABEL_ACCUMULATE_EXISTING_DST_VALUES "3" #define GEMMLOWP_LABEL_STORE "4" asm volatile( GEMMLOWP_MIPS_XADDIU " %[run_depth], -16\n" // Load lhs[] and rhs[], zero out internal accumulators. "ld.b $w16, 0(%[lhs_ptr])\n" "ldi.b $w0, 0\n" "ld.b $w20, 0(%[rhs_ptr])\n" "ldi.b $w1, 0\n" "ld.b $w17, 16(%[lhs_ptr])\n" "ldi.b $w2, 0\n" "ld.b $w21, 16(%[rhs_ptr])\n" "ldi.b $w3, 0\n" "ld.b $w18, 32(%[lhs_ptr])\n" "ldi.b $w4, 0\n" "ld.b $w19, 48(%[lhs_ptr])\n" "ldi.b $w5, 0\n" "ld.b $w22, 32(%[rhs_ptr])\n" "ldi.b $w6, 0\n" "ld.b $w23, 48(%[rhs_ptr])\n" "ldi.b $w7, 0\n" "ldi.b $w8, 0\n" "ldi.b $w9, 0\n" "ldi.b $w10, 0\n" "ldi.b $w11, 0\n" "ldi.b $w12, 0\n" "ldi.b $w13, 0\n" "ldi.b $w14, 0\n" "ldi.b $w15, 0\n" "ldi.h $w31, 1\n" // If the loop depth is only 16, then we can skip the general loop // and go straight to the final part of the code. "beqz %[run_depth], " GEMMLOWP_LABEL_AFTER_LOOP_LAST16 "f\n" GEMMLOWP_LABEL_LOOP ":\n" // Overview of register layout: // // A 4x16 block of Rhs is stored in 8 bit in w16-w19. // A 4x16 block of Lhs is stored in 8 bit in w20-w23. // // A 4x4 block of accumulators is stored in w0-w15 (as 4x32 bit // components which need to be horizontally added at the end). // // Dot products of Lhs and Rhs are 16-bit values, which can't // immediately be accumulated in 32-bit accumulators by that // same instruction that calculates them. // For example, "dotp_s.h $w25, $w16, $w20" produces 8 16-bit // sums in w25 (note, the 16 sums have already been reduced to 8 // by the horizontal addition of the dotp instruction). // They are then sign-extended to 32 bits, horizontally added // (again) to form 4 32-bit sums and then they are finally added // to the 32-bit accumulators, all by "dpadd_s.w $w0, $w25, $w31". // // +-----+-----+-----+-----+ // Rhs | w20 | w21 | w22 | w23 | // +-----+-----+-----+-----+ // // | | | | | // // Lhs | | | | | // // +---+ - - - - +-----+-----+-----+-----+ // |w16| | w0 | w4 | w8 | w12 | // |w17| | w1 | w5 | w9 | w13 | // |w18| | w2 | w6 | w10 | w14 | // |w19| | w3 | w7 | w11 | w15 | // +---+ - - - - +-----+-----+-----+-----+ // // Accumulators // Calculate the results for 16 depths and load // lhs[] and rhs[] for the next iteration. GEMMLOWP_MIPS_XADDIU " %[lhs_ptr], 64\n" GEMMLOWP_MIPS_XADDIU " %[rhs_ptr], 64\n" GEMMLOWP_MIPS_XADDIU " %[run_depth], -16\n" // Dot product: multiply-add pairs of adjacent int8 elements. // Each dot product takes 16*2 int8 values in and produces 8 int16 sums. "dotp_s.h $w25, $w16, $w20\n" "dotp_s.h $w26, $w17, $w20\n" "dotp_s.h $w27, $w16, $w21\n" "dotp_s.h $w28, $w17, $w21\n" "dotp_s.h $w29, $w18, $w20\n" // Horizontal add of pairs of adjacent int16 sums into internal int32 // accumulators. "dpadd_s.w $w0, $w25, $w31\n" "dpadd_s.w $w1, $w26, $w31\n" "dpadd_s.w $w4, $w27, $w31\n" "dpadd_s.w $w5, $w28, $w31\n" "dpadd_s.w $w2, $w29, $w31\n" // Dot product: multiply-add pairs of adjacent int8 elements. // Each dot product takes 16*2 int8 values in and produces 8 int16 sums. "dotp_s.h $w24, $w16, $w22\n" "dotp_s.h $w25, $w19, $w20\n" "dotp_s.h $w26, $w16, $w23\n" "dotp_s.h $w27, $w17, $w22\n" "ld.b $w20, 0(%[rhs_ptr])\n" "dotp_s.h $w28, $w17, $w23\n" "ld.b $w16, 0(%[lhs_ptr])\n" "dotp_s.h $w29, $w18, $w21\n" "ld.b $w17, 16(%[lhs_ptr])\n" // Horizontal add of pairs of adjacent int16 sums into internal int32 // accumulators. "dpadd_s.w $w8, $w24, $w31\n" "dpadd_s.w $w3, $w25, $w31\n" "dpadd_s.w $w12, $w26, $w31\n" "dpadd_s.w $w9, $w27, $w31\n" "dpadd_s.w $w13, $w28, $w31\n" "dpadd_s.w $w6, $w29, $w31\n" // Dot product: multiply-add pairs of adjacent int8 elements. // Each dot product takes 16*2 int8 values in and produces 8 int16 sums. "dotp_s.h $w25, $w19, $w21\n" "dotp_s.h $w26, $w18, $w22\n" "dotp_s.h $w27, $w18, $w23\n" "ld.b $w21, 16(%[rhs_ptr])\n" "dotp_s.h $w28, $w19, $w22\n" "ld.b $w18, 32(%[lhs_ptr])\n" "dotp_s.h $w29, $w19, $w23\n" "ld.b $w22, 32(%[rhs_ptr])\n" // Horizontal add of pairs of adjacent int16 sums into internal int32 // accumulators. "dpadd_s.w $w7, $w25, $w31\n" "ld.b $w19, 48(%[lhs_ptr])\n" "dpadd_s.w $w10, $w26, $w31\n" "ld.b $w23, 48(%[rhs_ptr])\n" "dpadd_s.w $w14, $w27, $w31\n" "dpadd_s.w $w11, $w28, $w31\n" "dpadd_s.w $w15, $w29, $w31\n" "bnez %[run_depth], " GEMMLOWP_LABEL_LOOP "b\n" GEMMLOWP_LABEL_AFTER_LOOP_LAST16 ":\n" // Calculate the results for the last 16 depths. // Dot product: multiply-add pairs of adjacent int8 elements. // Each dot product takes 16*2 int8 values in and produces 8 int16 sums. "dotp_s.h $w25, $w16, $w20\n" "dotp_s.h $w26, $w17, $w20\n" "dotp_s.h $w27, $w16, $w21\n" "dotp_s.h $w28, $w17, $w21\n" "dotp_s.h $w29, $w18, $w20\n" // Horizontal add of pairs of adjacent int16 sums into internal int32 // accumulators. "dpadd_s.w $w0, $w25, $w31\n" "dpadd_s.w $w1, $w26, $w31\n" "dpadd_s.w $w4, $w27, $w31\n" "dpadd_s.w $w5, $w28, $w31\n" "dpadd_s.w $w2, $w29, $w31\n" // Dot product: multiply-add pairs of adjacent int8 elements. // Each dot product takes 16*2 int8 values in and produces 8 int16 sums. "dotp_s.h $w24, $w16, $w22\n" "dotp_s.h $w25, $w19, $w20\n" "dotp_s.h $w26, $w16, $w23\n" "dotp_s.h $w27, $w17, $w22\n" "dotp_s.h $w28, $w17, $w23\n" "dotp_s.h $w29, $w18, $w21\n" // Horizontal add of pairs of adjacent int16 sums into internal int32 // accumulators. "dpadd_s.w $w8, $w24, $w31\n" "dpadd_s.w $w3, $w25, $w31\n" "dpadd_s.w $w12, $w26, $w31\n" "dpadd_s.w $w9, $w27, $w31\n" "dpadd_s.w $w13, $w28, $w31\n" "dpadd_s.w $w6, $w29, $w31\n" // Dot product: multiply-add pairs of adjacent int8 elements. // Each dot product takes 16*2 int8 values in and produces 8 int16 sums. "dotp_s.h $w25, $w19, $w21\n" "dotp_s.h $w26, $w18, $w22\n" "dotp_s.h $w27, $w18, $w23\n" "dotp_s.h $w28, $w19, $w22\n" "dotp_s.h $w29, $w19, $w23\n" // Horizontal add of pairs of adjacent int16 sums into internal int32 // accumulators. "dpadd_s.w $w7, $w25, $w31\n" "dpadd_s.w $w10, $w26, $w31\n" "dpadd_s.w $w14, $w27, $w31\n" "dpadd_s.w $w11, $w28, $w31\n" "dpadd_s.w $w15, $w29, $w31\n" // Horizontal-add internal accumulators. "hadd_s.d $w0, $w0, $w0\n" "hadd_s.d $w1, $w1, $w1\n" "hadd_s.d $w2, $w2, $w2\n" "hadd_s.d $w3, $w3, $w3\n" "hadd_s.d $w4, $w4, $w4\n" "hadd_s.d $w5, $w5, $w5\n" "hadd_s.d $w6, $w6, $w6\n" "hadd_s.d $w7, $w7, $w7\n" "hadd_s.d $w8, $w8, $w8\n" "hadd_s.d $w9, $w9, $w9\n" "hadd_s.d $w10, $w10, $w10\n" "hadd_s.d $w11, $w11, $w11\n" "hadd_s.d $w12, $w12, $w12\n" "hadd_s.d $w13, $w13, $w13\n" "hadd_s.d $w14, $w14, $w14\n" "hadd_s.d $w15, $w15, $w15\n" "pckev.w $w0, $w1, $w0\n" "pckev.w $w2, $w3, $w2\n" "pckev.w $w4, $w5, $w4\n" "pckev.w $w6, $w7, $w6\n" "pckev.w $w8, $w9, $w8\n" "pckev.w $w10, $w11, $w10\n" "pckev.w $w12, $w13, $w12\n" "pckev.w $w14, $w15, $w14\n" "hadd_s.d $w0, $w0, $w0\n" "hadd_s.d $w2, $w2, $w2\n" "hadd_s.d $w4, $w4, $w4\n" "hadd_s.d $w6, $w6, $w6\n" "hadd_s.d $w8, $w8, $w8\n" "hadd_s.d $w10, $w10, $w10\n" "hadd_s.d $w12, $w12, $w12\n" "hadd_s.d $w14, $w14, $w14\n" // 4 more pckev instructions follow in both paths below. // Check if start_depth==0 to decide whether we will load // existing accumulators from memory. "bnez %[start_depth], " GEMMLOWP_LABEL_ACCUMULATE_EXISTING_DST_VALUES "f\n" "pckev.w $w0, $w2, $w0\n" "pckev.w $w1, $w6, $w4\n" "pckev.w $w2, $w10, $w8\n" "pckev.w $w3, $w14, $w12\n" "b " GEMMLOWP_LABEL_STORE "f\n" GEMMLOWP_LABEL_ACCUMULATE_EXISTING_DST_VALUES ":\n" // Load accumulators from memory. "ld.w $w16, 0(%[dst_ptr0])\n" "pckev.w $w0, $w2, $w0\n" "ld.w $w17, 0(%[dst_ptr1])\n" "pckev.w $w1, $w6, $w4\n" "ld.w $w18, 0(%[dst_ptr2])\n" "pckev.w $w2, $w10, $w8\n" "ld.w $w19, 0(%[dst_ptr3])\n" "pckev.w $w3, $w14, $w12\n" // Add them to internal accumulators. "addv.w $w0, $w0, $w16\n" "addv.w $w1, $w1, $w17\n" "addv.w $w2, $w2, $w18\n" "addv.w $w3, $w3, $w19\n" GEMMLOWP_LABEL_STORE ":\n" // Store accumulators. "st.w $w0, 0(%[dst_ptr0])\n" "st.w $w1, 0(%[dst_ptr1])\n" "st.w $w2, 0(%[dst_ptr2])\n" "st.w $w3, 0(%[dst_ptr3])\n" : // outputs [lhs_ptr] "+r"(lhs_ptr), [rhs_ptr] "+r"(rhs_ptr), [run_depth] "+r"(run_depth) : // inputs [dst_ptr0] "r"(dst_ptr), [dst_ptr1] "r"(dst_ptr + dst_col_stride), [dst_ptr2] "r"(dst_ptr + dst_col_stride * 2), [dst_ptr3] "r"(dst_ptr + dst_col_stride * 3), [start_depth] "r"(start_depth) : // clobbers "memory", "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23", "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31"); #undef GEMMLOWP_LABEL_LOOP #undef GEMMLOWP_LABEL_AFTER_LOOP_LAST16 #undef GEMMLOWP_LABEL_ACCUMULATE_EXISTING_DST_VALUES #undef GEMMLOWP_LABEL_STORE } }; #undef GEMMLOWP_MIPS_XADDU #undef GEMMLOWP_MIPS_XADDIU #undef GEMMLOWP_MIPS_XSLL #endif // GEMMLOWP_MSA } // namespace gemmlowp #endif // GEMMLOWP_INTERNAL_KERNEL_MSA_H_