/* * jdmrgext-neon.c - merged upsampling/color conversion (Arm Neon) * * Copyright (C) 2020, Arm Limited. All Rights Reserved. * Copyright (C) 2020, D. R. Commander. All Rights Reserved. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ /* This file is included by jdmerge-neon.c. */ /* These routines combine simple (non-fancy, i.e. non-smooth) h2v1 or h2v2 * chroma upsampling and YCbCr -> RGB color conversion into a single function. * * As with the standalone functions, YCbCr -> RGB conversion is defined by the * following equations: * R = Y + 1.40200 * (Cr - 128) * G = Y - 0.34414 * (Cb - 128) - 0.71414 * (Cr - 128) * B = Y + 1.77200 * (Cb - 128) * * Scaled integer constants are used to avoid floating-point arithmetic: * 0.3441467 = 11277 * 2^-15 * 0.7141418 = 23401 * 2^-15 * 1.4020386 = 22971 * 2^-14 * 1.7720337 = 29033 * 2^-14 * These constants are defined in jdmerge-neon.c. * * To ensure correct results, rounding is used when descaling. */ /* Notes on safe memory access for merged upsampling/YCbCr -> RGB conversion * routines: * * Input memory buffers can be safely overread up to the next multiple of * ALIGN_SIZE bytes, since they are always allocated by alloc_sarray() in * jmemmgr.c. * * The output buffer cannot safely be written beyond output_width, since * output_buf points to a possibly unpadded row in the decompressed image * buffer allocated by the calling program. */ /* Upsample and color convert for the case of 2:1 horizontal and 1:1 vertical. */ void jsimd_h2v1_merged_upsample_neon(JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { JSAMPROW outptr; /* Pointers to Y, Cb, and Cr data */ JSAMPROW inptr0, inptr1, inptr2; const int16x4_t consts = vld1_s16(jsimd_ycc_rgb_convert_neon_consts); const int16x8_t neg_128 = vdupq_n_s16(-128); inptr0 = input_buf[0][in_row_group_ctr]; inptr1 = input_buf[1][in_row_group_ctr]; inptr2 = input_buf[2][in_row_group_ctr]; outptr = output_buf[0]; int cols_remaining = output_width; for (; cols_remaining >= 16; cols_remaining -= 16) { /* De-interleave Y component values into two separate vectors, one * containing the component values with even-numbered indices and one * containing the component values with odd-numbered indices. */ uint8x8x2_t y = vld2_u8(inptr0); uint8x8_t cb = vld1_u8(inptr1); uint8x8_t cr = vld1_u8(inptr2); /* Subtract 128 from Cb and Cr. */ int16x8_t cr_128 = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(neg_128), cr)); int16x8_t cb_128 = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(neg_128), cb)); /* Compute G-Y: - 0.34414 * (Cb - 128) - 0.71414 * (Cr - 128) */ int32x4_t g_sub_y_l = vmull_lane_s16(vget_low_s16(cb_128), consts, 0); int32x4_t g_sub_y_h = vmull_lane_s16(vget_high_s16(cb_128), consts, 0); g_sub_y_l = vmlsl_lane_s16(g_sub_y_l, vget_low_s16(cr_128), consts, 1); g_sub_y_h = vmlsl_lane_s16(g_sub_y_h, vget_high_s16(cr_128), consts, 1); /* Descale G components: shift right 15, round, and narrow to 16-bit. */ int16x8_t g_sub_y = vcombine_s16(vrshrn_n_s32(g_sub_y_l, 15), vrshrn_n_s32(g_sub_y_h, 15)); /* Compute R-Y: 1.40200 * (Cr - 128) */ int16x8_t r_sub_y = vqrdmulhq_lane_s16(vshlq_n_s16(cr_128, 1), consts, 2); /* Compute B-Y: 1.77200 * (Cb - 128) */ int16x8_t b_sub_y = vqrdmulhq_lane_s16(vshlq_n_s16(cb_128, 1), consts, 3); /* Add the chroma-derived values (G-Y, R-Y, and B-Y) to both the "even" and * "odd" Y component values. This effectively upsamples the chroma * components horizontally. */ int16x8_t g_even = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(g_sub_y), y.val[0])); int16x8_t r_even = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(r_sub_y), y.val[0])); int16x8_t b_even = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(b_sub_y), y.val[0])); int16x8_t g_odd = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(g_sub_y), y.val[1])); int16x8_t r_odd = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(r_sub_y), y.val[1])); int16x8_t b_odd = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(b_sub_y), y.val[1])); /* Convert each component to unsigned and narrow, clamping to [0-255]. * Re-interleave the "even" and "odd" component values. */ uint8x8x2_t r = vzip_u8(vqmovun_s16(r_even), vqmovun_s16(r_odd)); uint8x8x2_t g = vzip_u8(vqmovun_s16(g_even), vqmovun_s16(g_odd)); uint8x8x2_t b = vzip_u8(vqmovun_s16(b_even), vqmovun_s16(b_odd)); #ifdef RGB_ALPHA uint8x16x4_t rgba; rgba.val[RGB_RED] = vcombine_u8(r.val[0], r.val[1]); rgba.val[RGB_GREEN] = vcombine_u8(g.val[0], g.val[1]); rgba.val[RGB_BLUE] = vcombine_u8(b.val[0], b.val[1]); /* Set alpha channel to opaque (0xFF). */ rgba.val[RGB_ALPHA] = vdupq_n_u8(0xFF); /* Store RGBA pixel data to memory. */ vst4q_u8(outptr, rgba); #else uint8x16x3_t rgb; rgb.val[RGB_RED] = vcombine_u8(r.val[0], r.val[1]); rgb.val[RGB_GREEN] = vcombine_u8(g.val[0], g.val[1]); rgb.val[RGB_BLUE] = vcombine_u8(b.val[0], b.val[1]); /* Store RGB pixel data to memory. */ vst3q_u8(outptr, rgb); #endif /* Increment pointers. */ inptr0 += 16; inptr1 += 8; inptr2 += 8; outptr += (RGB_PIXELSIZE * 16); } if (cols_remaining > 0) { /* De-interleave Y component values into two separate vectors, one * containing the component values with even-numbered indices and one * containing the component values with odd-numbered indices. */ uint8x8x2_t y = vld2_u8(inptr0); uint8x8_t cb = vld1_u8(inptr1); uint8x8_t cr = vld1_u8(inptr2); /* Subtract 128 from Cb and Cr. */ int16x8_t cr_128 = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(neg_128), cr)); int16x8_t cb_128 = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(neg_128), cb)); /* Compute G-Y: - 0.34414 * (Cb - 128) - 0.71414 * (Cr - 128) */ int32x4_t g_sub_y_l = vmull_lane_s16(vget_low_s16(cb_128), consts, 0); int32x4_t g_sub_y_h = vmull_lane_s16(vget_high_s16(cb_128), consts, 0); g_sub_y_l = vmlsl_lane_s16(g_sub_y_l, vget_low_s16(cr_128), consts, 1); g_sub_y_h = vmlsl_lane_s16(g_sub_y_h, vget_high_s16(cr_128), consts, 1); /* Descale G components: shift right 15, round, and narrow to 16-bit. */ int16x8_t g_sub_y = vcombine_s16(vrshrn_n_s32(g_sub_y_l, 15), vrshrn_n_s32(g_sub_y_h, 15)); /* Compute R-Y: 1.40200 * (Cr - 128) */ int16x8_t r_sub_y = vqrdmulhq_lane_s16(vshlq_n_s16(cr_128, 1), consts, 2); /* Compute B-Y: 1.77200 * (Cb - 128) */ int16x8_t b_sub_y = vqrdmulhq_lane_s16(vshlq_n_s16(cb_128, 1), consts, 3); /* Add the chroma-derived values (G-Y, R-Y, and B-Y) to both the "even" and * "odd" Y component values. This effectively upsamples the chroma * components horizontally. */ int16x8_t g_even = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(g_sub_y), y.val[0])); int16x8_t r_even = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(r_sub_y), y.val[0])); int16x8_t b_even = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(b_sub_y), y.val[0])); int16x8_t g_odd = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(g_sub_y), y.val[1])); int16x8_t r_odd = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(r_sub_y), y.val[1])); int16x8_t b_odd = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(b_sub_y), y.val[1])); /* Convert each component to unsigned and narrow, clamping to [0-255]. * Re-interleave the "even" and "odd" component values. */ uint8x8x2_t r = vzip_u8(vqmovun_s16(r_even), vqmovun_s16(r_odd)); uint8x8x2_t g = vzip_u8(vqmovun_s16(g_even), vqmovun_s16(g_odd)); uint8x8x2_t b = vzip_u8(vqmovun_s16(b_even), vqmovun_s16(b_odd)); #ifdef RGB_ALPHA uint8x8x4_t rgba_h; rgba_h.val[RGB_RED] = r.val[1]; rgba_h.val[RGB_GREEN] = g.val[1]; rgba_h.val[RGB_BLUE] = b.val[1]; /* Set alpha channel to opaque (0xFF). */ rgba_h.val[RGB_ALPHA] = vdup_n_u8(0xFF); uint8x8x4_t rgba_l; rgba_l.val[RGB_RED] = r.val[0]; rgba_l.val[RGB_GREEN] = g.val[0]; rgba_l.val[RGB_BLUE] = b.val[0]; /* Set alpha channel to opaque (0xFF). */ rgba_l.val[RGB_ALPHA] = vdup_n_u8(0xFF); /* Store RGBA pixel data to memory. */ switch (cols_remaining) { case 15: vst4_lane_u8(outptr + 14 * RGB_PIXELSIZE, rgba_h, 6); case 14: vst4_lane_u8(outptr + 13 * RGB_PIXELSIZE, rgba_h, 5); case 13: vst4_lane_u8(outptr + 12 * RGB_PIXELSIZE, rgba_h, 4); case 12: vst4_lane_u8(outptr + 11 * RGB_PIXELSIZE, rgba_h, 3); case 11: vst4_lane_u8(outptr + 10 * RGB_PIXELSIZE, rgba_h, 2); case 10: vst4_lane_u8(outptr + 9 * RGB_PIXELSIZE, rgba_h, 1); case 9: vst4_lane_u8(outptr + 8 * RGB_PIXELSIZE, rgba_h, 0); case 8: vst4_u8(outptr, rgba_l); break; case 7: vst4_lane_u8(outptr + 6 * RGB_PIXELSIZE, rgba_l, 6); case 6: vst4_lane_u8(outptr + 5 * RGB_PIXELSIZE, rgba_l, 5); case 5: vst4_lane_u8(outptr + 4 * RGB_PIXELSIZE, rgba_l, 4); case 4: vst4_lane_u8(outptr + 3 * RGB_PIXELSIZE, rgba_l, 3); case 3: vst4_lane_u8(outptr + 2 * RGB_PIXELSIZE, rgba_l, 2); case 2: vst4_lane_u8(outptr + RGB_PIXELSIZE, rgba_l, 1); case 1: vst4_lane_u8(outptr, rgba_l, 0); default: break; } #else uint8x8x3_t rgb_h; rgb_h.val[RGB_RED] = r.val[1]; rgb_h.val[RGB_GREEN] = g.val[1]; rgb_h.val[RGB_BLUE] = b.val[1]; uint8x8x3_t rgb_l; rgb_l.val[RGB_RED] = r.val[0]; rgb_l.val[RGB_GREEN] = g.val[0]; rgb_l.val[RGB_BLUE] = b.val[0]; /* Store RGB pixel data to memory. */ switch (cols_remaining) { case 15: vst3_lane_u8(outptr + 14 * RGB_PIXELSIZE, rgb_h, 6); case 14: vst3_lane_u8(outptr + 13 * RGB_PIXELSIZE, rgb_h, 5); case 13: vst3_lane_u8(outptr + 12 * RGB_PIXELSIZE, rgb_h, 4); case 12: vst3_lane_u8(outptr + 11 * RGB_PIXELSIZE, rgb_h, 3); case 11: vst3_lane_u8(outptr + 10 * RGB_PIXELSIZE, rgb_h, 2); case 10: vst3_lane_u8(outptr + 9 * RGB_PIXELSIZE, rgb_h, 1); case 9: vst3_lane_u8(outptr + 8 * RGB_PIXELSIZE, rgb_h, 0); case 8: vst3_u8(outptr, rgb_l); break; case 7: vst3_lane_u8(outptr + 6 * RGB_PIXELSIZE, rgb_l, 6); case 6: vst3_lane_u8(outptr + 5 * RGB_PIXELSIZE, rgb_l, 5); case 5: vst3_lane_u8(outptr + 4 * RGB_PIXELSIZE, rgb_l, 4); case 4: vst3_lane_u8(outptr + 3 * RGB_PIXELSIZE, rgb_l, 3); case 3: vst3_lane_u8(outptr + 2 * RGB_PIXELSIZE, rgb_l, 2); case 2: vst3_lane_u8(outptr + RGB_PIXELSIZE, rgb_l, 1); case 1: vst3_lane_u8(outptr, rgb_l, 0); default: break; } #endif } } /* Upsample and color convert for the case of 2:1 horizontal and 2:1 vertical. * * See comments above for details regarding color conversion and safe memory * access. */ void jsimd_h2v2_merged_upsample_neon(JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { JSAMPROW outptr0, outptr1; /* Pointers to Y (both rows), Cb, and Cr data */ JSAMPROW inptr0_0, inptr0_1, inptr1, inptr2; const int16x4_t consts = vld1_s16(jsimd_ycc_rgb_convert_neon_consts); const int16x8_t neg_128 = vdupq_n_s16(-128); inptr0_0 = input_buf[0][in_row_group_ctr * 2]; inptr0_1 = input_buf[0][in_row_group_ctr * 2 + 1]; inptr1 = input_buf[1][in_row_group_ctr]; inptr2 = input_buf[2][in_row_group_ctr]; outptr0 = output_buf[0]; outptr1 = output_buf[1]; int cols_remaining = output_width; for (; cols_remaining >= 16; cols_remaining -= 16) { /* For each row, de-interleave Y component values into two separate * vectors, one containing the component values with even-numbered indices * and one containing the component values with odd-numbered indices. */ uint8x8x2_t y0 = vld2_u8(inptr0_0); uint8x8x2_t y1 = vld2_u8(inptr0_1); uint8x8_t cb = vld1_u8(inptr1); uint8x8_t cr = vld1_u8(inptr2); /* Subtract 128 from Cb and Cr. */ int16x8_t cr_128 = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(neg_128), cr)); int16x8_t cb_128 = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(neg_128), cb)); /* Compute G-Y: - 0.34414 * (Cb - 128) - 0.71414 * (Cr - 128) */ int32x4_t g_sub_y_l = vmull_lane_s16(vget_low_s16(cb_128), consts, 0); int32x4_t g_sub_y_h = vmull_lane_s16(vget_high_s16(cb_128), consts, 0); g_sub_y_l = vmlsl_lane_s16(g_sub_y_l, vget_low_s16(cr_128), consts, 1); g_sub_y_h = vmlsl_lane_s16(g_sub_y_h, vget_high_s16(cr_128), consts, 1); /* Descale G components: shift right 15, round, and narrow to 16-bit. */ int16x8_t g_sub_y = vcombine_s16(vrshrn_n_s32(g_sub_y_l, 15), vrshrn_n_s32(g_sub_y_h, 15)); /* Compute R-Y: 1.40200 * (Cr - 128) */ int16x8_t r_sub_y = vqrdmulhq_lane_s16(vshlq_n_s16(cr_128, 1), consts, 2); /* Compute B-Y: 1.77200 * (Cb - 128) */ int16x8_t b_sub_y = vqrdmulhq_lane_s16(vshlq_n_s16(cb_128, 1), consts, 3); /* For each row, add the chroma-derived values (G-Y, R-Y, and B-Y) to both * the "even" and "odd" Y component values. This effectively upsamples the * chroma components both horizontally and vertically. */ int16x8_t g0_even = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(g_sub_y), y0.val[0])); int16x8_t r0_even = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(r_sub_y), y0.val[0])); int16x8_t b0_even = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(b_sub_y), y0.val[0])); int16x8_t g0_odd = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(g_sub_y), y0.val[1])); int16x8_t r0_odd = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(r_sub_y), y0.val[1])); int16x8_t b0_odd = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(b_sub_y), y0.val[1])); int16x8_t g1_even = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(g_sub_y), y1.val[0])); int16x8_t r1_even = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(r_sub_y), y1.val[0])); int16x8_t b1_even = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(b_sub_y), y1.val[0])); int16x8_t g1_odd = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(g_sub_y), y1.val[1])); int16x8_t r1_odd = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(r_sub_y), y1.val[1])); int16x8_t b1_odd = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(b_sub_y), y1.val[1])); /* Convert each component to unsigned and narrow, clamping to [0-255]. * Re-interleave the "even" and "odd" component values. */ uint8x8x2_t r0 = vzip_u8(vqmovun_s16(r0_even), vqmovun_s16(r0_odd)); uint8x8x2_t r1 = vzip_u8(vqmovun_s16(r1_even), vqmovun_s16(r1_odd)); uint8x8x2_t g0 = vzip_u8(vqmovun_s16(g0_even), vqmovun_s16(g0_odd)); uint8x8x2_t g1 = vzip_u8(vqmovun_s16(g1_even), vqmovun_s16(g1_odd)); uint8x8x2_t b0 = vzip_u8(vqmovun_s16(b0_even), vqmovun_s16(b0_odd)); uint8x8x2_t b1 = vzip_u8(vqmovun_s16(b1_even), vqmovun_s16(b1_odd)); #ifdef RGB_ALPHA uint8x16x4_t rgba0, rgba1; rgba0.val[RGB_RED] = vcombine_u8(r0.val[0], r0.val[1]); rgba1.val[RGB_RED] = vcombine_u8(r1.val[0], r1.val[1]); rgba0.val[RGB_GREEN] = vcombine_u8(g0.val[0], g0.val[1]); rgba1.val[RGB_GREEN] = vcombine_u8(g1.val[0], g1.val[1]); rgba0.val[RGB_BLUE] = vcombine_u8(b0.val[0], b0.val[1]); rgba1.val[RGB_BLUE] = vcombine_u8(b1.val[0], b1.val[1]); /* Set alpha channel to opaque (0xFF). */ rgba0.val[RGB_ALPHA] = vdupq_n_u8(0xFF); rgba1.val[RGB_ALPHA] = vdupq_n_u8(0xFF); /* Store RGBA pixel data to memory. */ vst4q_u8(outptr0, rgba0); vst4q_u8(outptr1, rgba1); #else uint8x16x3_t rgb0, rgb1; rgb0.val[RGB_RED] = vcombine_u8(r0.val[0], r0.val[1]); rgb1.val[RGB_RED] = vcombine_u8(r1.val[0], r1.val[1]); rgb0.val[RGB_GREEN] = vcombine_u8(g0.val[0], g0.val[1]); rgb1.val[RGB_GREEN] = vcombine_u8(g1.val[0], g1.val[1]); rgb0.val[RGB_BLUE] = vcombine_u8(b0.val[0], b0.val[1]); rgb1.val[RGB_BLUE] = vcombine_u8(b1.val[0], b1.val[1]); /* Store RGB pixel data to memory. */ vst3q_u8(outptr0, rgb0); vst3q_u8(outptr1, rgb1); #endif /* Increment pointers. */ inptr0_0 += 16; inptr0_1 += 16; inptr1 += 8; inptr2 += 8; outptr0 += (RGB_PIXELSIZE * 16); outptr1 += (RGB_PIXELSIZE * 16); } if (cols_remaining > 0) { /* For each row, de-interleave Y component values into two separate * vectors, one containing the component values with even-numbered indices * and one containing the component values with odd-numbered indices. */ uint8x8x2_t y0 = vld2_u8(inptr0_0); uint8x8x2_t y1 = vld2_u8(inptr0_1); uint8x8_t cb = vld1_u8(inptr1); uint8x8_t cr = vld1_u8(inptr2); /* Subtract 128 from Cb and Cr. */ int16x8_t cr_128 = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(neg_128), cr)); int16x8_t cb_128 = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(neg_128), cb)); /* Compute G-Y: - 0.34414 * (Cb - 128) - 0.71414 * (Cr - 128) */ int32x4_t g_sub_y_l = vmull_lane_s16(vget_low_s16(cb_128), consts, 0); int32x4_t g_sub_y_h = vmull_lane_s16(vget_high_s16(cb_128), consts, 0); g_sub_y_l = vmlsl_lane_s16(g_sub_y_l, vget_low_s16(cr_128), consts, 1); g_sub_y_h = vmlsl_lane_s16(g_sub_y_h, vget_high_s16(cr_128), consts, 1); /* Descale G components: shift right 15, round, and narrow to 16-bit. */ int16x8_t g_sub_y = vcombine_s16(vrshrn_n_s32(g_sub_y_l, 15), vrshrn_n_s32(g_sub_y_h, 15)); /* Compute R-Y: 1.40200 * (Cr - 128) */ int16x8_t r_sub_y = vqrdmulhq_lane_s16(vshlq_n_s16(cr_128, 1), consts, 2); /* Compute B-Y: 1.77200 * (Cb - 128) */ int16x8_t b_sub_y = vqrdmulhq_lane_s16(vshlq_n_s16(cb_128, 1), consts, 3); /* For each row, add the chroma-derived values (G-Y, R-Y, and B-Y) to both * the "even" and "odd" Y component values. This effectively upsamples the * chroma components both horizontally and vertically. */ int16x8_t g0_even = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(g_sub_y), y0.val[0])); int16x8_t r0_even = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(r_sub_y), y0.val[0])); int16x8_t b0_even = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(b_sub_y), y0.val[0])); int16x8_t g0_odd = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(g_sub_y), y0.val[1])); int16x8_t r0_odd = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(r_sub_y), y0.val[1])); int16x8_t b0_odd = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(b_sub_y), y0.val[1])); int16x8_t g1_even = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(g_sub_y), y1.val[0])); int16x8_t r1_even = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(r_sub_y), y1.val[0])); int16x8_t b1_even = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(b_sub_y), y1.val[0])); int16x8_t g1_odd = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(g_sub_y), y1.val[1])); int16x8_t r1_odd = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(r_sub_y), y1.val[1])); int16x8_t b1_odd = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(b_sub_y), y1.val[1])); /* Convert each component to unsigned and narrow, clamping to [0-255]. * Re-interleave the "even" and "odd" component values. */ uint8x8x2_t r0 = vzip_u8(vqmovun_s16(r0_even), vqmovun_s16(r0_odd)); uint8x8x2_t r1 = vzip_u8(vqmovun_s16(r1_even), vqmovun_s16(r1_odd)); uint8x8x2_t g0 = vzip_u8(vqmovun_s16(g0_even), vqmovun_s16(g0_odd)); uint8x8x2_t g1 = vzip_u8(vqmovun_s16(g1_even), vqmovun_s16(g1_odd)); uint8x8x2_t b0 = vzip_u8(vqmovun_s16(b0_even), vqmovun_s16(b0_odd)); uint8x8x2_t b1 = vzip_u8(vqmovun_s16(b1_even), vqmovun_s16(b1_odd)); #ifdef RGB_ALPHA uint8x8x4_t rgba0_h, rgba1_h; rgba0_h.val[RGB_RED] = r0.val[1]; rgba1_h.val[RGB_RED] = r1.val[1]; rgba0_h.val[RGB_GREEN] = g0.val[1]; rgba1_h.val[RGB_GREEN] = g1.val[1]; rgba0_h.val[RGB_BLUE] = b0.val[1]; rgba1_h.val[RGB_BLUE] = b1.val[1]; /* Set alpha channel to opaque (0xFF). */ rgba0_h.val[RGB_ALPHA] = vdup_n_u8(0xFF); rgba1_h.val[RGB_ALPHA] = vdup_n_u8(0xFF); uint8x8x4_t rgba0_l, rgba1_l; rgba0_l.val[RGB_RED] = r0.val[0]; rgba1_l.val[RGB_RED] = r1.val[0]; rgba0_l.val[RGB_GREEN] = g0.val[0]; rgba1_l.val[RGB_GREEN] = g1.val[0]; rgba0_l.val[RGB_BLUE] = b0.val[0]; rgba1_l.val[RGB_BLUE] = b1.val[0]; /* Set alpha channel to opaque (0xFF). */ rgba0_l.val[RGB_ALPHA] = vdup_n_u8(0xFF); rgba1_l.val[RGB_ALPHA] = vdup_n_u8(0xFF); /* Store RGBA pixel data to memory. */ switch (cols_remaining) { case 15: vst4_lane_u8(outptr0 + 14 * RGB_PIXELSIZE, rgba0_h, 6); vst4_lane_u8(outptr1 + 14 * RGB_PIXELSIZE, rgba1_h, 6); case 14: vst4_lane_u8(outptr0 + 13 * RGB_PIXELSIZE, rgba0_h, 5); vst4_lane_u8(outptr1 + 13 * RGB_PIXELSIZE, rgba1_h, 5); case 13: vst4_lane_u8(outptr0 + 12 * RGB_PIXELSIZE, rgba0_h, 4); vst4_lane_u8(outptr1 + 12 * RGB_PIXELSIZE, rgba1_h, 4); case 12: vst4_lane_u8(outptr0 + 11 * RGB_PIXELSIZE, rgba0_h, 3); vst4_lane_u8(outptr1 + 11 * RGB_PIXELSIZE, rgba1_h, 3); case 11: vst4_lane_u8(outptr0 + 10 * RGB_PIXELSIZE, rgba0_h, 2); vst4_lane_u8(outptr1 + 10 * RGB_PIXELSIZE, rgba1_h, 2); case 10: vst4_lane_u8(outptr0 + 9 * RGB_PIXELSIZE, rgba0_h, 1); vst4_lane_u8(outptr1 + 9 * RGB_PIXELSIZE, rgba1_h, 1); case 9: vst4_lane_u8(outptr0 + 8 * RGB_PIXELSIZE, rgba0_h, 0); vst4_lane_u8(outptr1 + 8 * RGB_PIXELSIZE, rgba1_h, 0); case 8: vst4_u8(outptr0, rgba0_l); vst4_u8(outptr1, rgba1_l); break; case 7: vst4_lane_u8(outptr0 + 6 * RGB_PIXELSIZE, rgba0_l, 6); vst4_lane_u8(outptr1 + 6 * RGB_PIXELSIZE, rgba1_l, 6); case 6: vst4_lane_u8(outptr0 + 5 * RGB_PIXELSIZE, rgba0_l, 5); vst4_lane_u8(outptr1 + 5 * RGB_PIXELSIZE, rgba1_l, 5); case 5: vst4_lane_u8(outptr0 + 4 * RGB_PIXELSIZE, rgba0_l, 4); vst4_lane_u8(outptr1 + 4 * RGB_PIXELSIZE, rgba1_l, 4); case 4: vst4_lane_u8(outptr0 + 3 * RGB_PIXELSIZE, rgba0_l, 3); vst4_lane_u8(outptr1 + 3 * RGB_PIXELSIZE, rgba1_l, 3); case 3: vst4_lane_u8(outptr0 + 2 * RGB_PIXELSIZE, rgba0_l, 2); vst4_lane_u8(outptr1 + 2 * RGB_PIXELSIZE, rgba1_l, 2); case 2: vst4_lane_u8(outptr0 + 1 * RGB_PIXELSIZE, rgba0_l, 1); vst4_lane_u8(outptr1 + 1 * RGB_PIXELSIZE, rgba1_l, 1); case 1: vst4_lane_u8(outptr0, rgba0_l, 0); vst4_lane_u8(outptr1, rgba1_l, 0); default: break; } #else uint8x8x3_t rgb0_h, rgb1_h; rgb0_h.val[RGB_RED] = r0.val[1]; rgb1_h.val[RGB_RED] = r1.val[1]; rgb0_h.val[RGB_GREEN] = g0.val[1]; rgb1_h.val[RGB_GREEN] = g1.val[1]; rgb0_h.val[RGB_BLUE] = b0.val[1]; rgb1_h.val[RGB_BLUE] = b1.val[1]; uint8x8x3_t rgb0_l, rgb1_l; rgb0_l.val[RGB_RED] = r0.val[0]; rgb1_l.val[RGB_RED] = r1.val[0]; rgb0_l.val[RGB_GREEN] = g0.val[0]; rgb1_l.val[RGB_GREEN] = g1.val[0]; rgb0_l.val[RGB_BLUE] = b0.val[0]; rgb1_l.val[RGB_BLUE] = b1.val[0]; /* Store RGB pixel data to memory. */ switch (cols_remaining) { case 15: vst3_lane_u8(outptr0 + 14 * RGB_PIXELSIZE, rgb0_h, 6); vst3_lane_u8(outptr1 + 14 * RGB_PIXELSIZE, rgb1_h, 6); case 14: vst3_lane_u8(outptr0 + 13 * RGB_PIXELSIZE, rgb0_h, 5); vst3_lane_u8(outptr1 + 13 * RGB_PIXELSIZE, rgb1_h, 5); case 13: vst3_lane_u8(outptr0 + 12 * RGB_PIXELSIZE, rgb0_h, 4); vst3_lane_u8(outptr1 + 12 * RGB_PIXELSIZE, rgb1_h, 4); case 12: vst3_lane_u8(outptr0 + 11 * RGB_PIXELSIZE, rgb0_h, 3); vst3_lane_u8(outptr1 + 11 * RGB_PIXELSIZE, rgb1_h, 3); case 11: vst3_lane_u8(outptr0 + 10 * RGB_PIXELSIZE, rgb0_h, 2); vst3_lane_u8(outptr1 + 10 * RGB_PIXELSIZE, rgb1_h, 2); case 10: vst3_lane_u8(outptr0 + 9 * RGB_PIXELSIZE, rgb0_h, 1); vst3_lane_u8(outptr1 + 9 * RGB_PIXELSIZE, rgb1_h, 1); case 9: vst3_lane_u8(outptr0 + 8 * RGB_PIXELSIZE, rgb0_h, 0); vst3_lane_u8(outptr1 + 8 * RGB_PIXELSIZE, rgb1_h, 0); case 8: vst3_u8(outptr0, rgb0_l); vst3_u8(outptr1, rgb1_l); break; case 7: vst3_lane_u8(outptr0 + 6 * RGB_PIXELSIZE, rgb0_l, 6); vst3_lane_u8(outptr1 + 6 * RGB_PIXELSIZE, rgb1_l, 6); case 6: vst3_lane_u8(outptr0 + 5 * RGB_PIXELSIZE, rgb0_l, 5); vst3_lane_u8(outptr1 + 5 * RGB_PIXELSIZE, rgb1_l, 5); case 5: vst3_lane_u8(outptr0 + 4 * RGB_PIXELSIZE, rgb0_l, 4); vst3_lane_u8(outptr1 + 4 * RGB_PIXELSIZE, rgb1_l, 4); case 4: vst3_lane_u8(outptr0 + 3 * RGB_PIXELSIZE, rgb0_l, 3); vst3_lane_u8(outptr1 + 3 * RGB_PIXELSIZE, rgb1_l, 3); case 3: vst3_lane_u8(outptr0 + 2 * RGB_PIXELSIZE, rgb0_l, 2); vst3_lane_u8(outptr1 + 2 * RGB_PIXELSIZE, rgb1_l, 2); case 2: vst3_lane_u8(outptr0 + 1 * RGB_PIXELSIZE, rgb0_l, 1); vst3_lane_u8(outptr1 + 1 * RGB_PIXELSIZE, rgb1_l, 1); case 1: vst3_lane_u8(outptr0, rgb0_l, 0); vst3_lane_u8(outptr1, rgb1_l, 0); default: break; } #endif } }