// 1) Compile shared code into different object files and into an executable. // RUN: %clangxx_profgen -std=c++14 -fcoverage-mapping %s -c -o %t.v1.o \ // RUN: -D_VERSION_1 // RUN: %clangxx_profgen -std=c++14 -fcoverage-mapping %s -c -o %t.v2.o \ // RUN: -D_VERSION_2 // RUN: %clangxx_profgen -std=c++14 -fcoverage-mapping %t.v1.o %t.v2.o \ // RUN: -o %t.exe // 2) Collect profile data. // RUN: env LLVM_PROFILE_FILE=%t.profraw %run %t.exe // RUN: llvm-profdata merge %t.profraw -o %t.profdata // 3) Generate coverage reports from the different object files and the exe. // RUN: llvm-cov show %t.v1.o -instr-profile=%t.profdata | FileCheck %s -check-prefixes=V1,V1-ONLY // RUN: llvm-cov show %t.v2.o -instr-profile=%t.profdata | FileCheck %s -check-prefixes=V2,V2-ONLY // RUN: llvm-cov show %t.v1.o -object %t.v2.o -instr-profile=%t.profdata | FileCheck %s -check-prefixes=V1,V2 // RUN: llvm-cov show %t.exe -instr-profile=%t.profdata | FileCheck %s -check-prefixes=V1,V2 // 4) Verify that coverage reporting on the aggregate coverage mapping shows // hits for all code. (We used to arbitrarily pick a mapping from one binary // and prefer it over others.) When only limited coverage information is // available (just from one binary), don't try to guess any region counts. struct A { A() {} // V1: [[@LINE]]{{ *}}|{{ *}}1 // V1-ONLY: [[@LINE+1]]{{ *}}|{{ *}}| A(int) {} // V2-ONLY: [[@LINE-2]]{{ *}}|{{ *}}| // V2: [[@LINE-1]]{{ *}}|{{ *}}1 }; #ifdef _VERSION_1 void foo(); void bar() { A x; // V1: [[@LINE]]{{ *}}|{{ *}}1 } int main() { foo(); // V1: [[@LINE]]{{ *}}|{{ *}}1 bar(); return 0; } #endif // _VERSION_1 #ifdef _VERSION_2 void foo() { A x{0}; // V2: [[@LINE]]{{ *}}|{{ *}}1 } #endif // _VERSION_2