//===- DevelopmentModeInlineAdvisor.cpp - runtime-loadable model runner --===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a model runner using Tensorflow C APIs, allowing the // loading of a model from a command line option. // //===----------------------------------------------------------------------===// #include "llvm/Config/config.h" #if defined(LLVM_HAVE_TF_API) #include "llvm/Analysis/CallGraph.h" #include "llvm/Analysis/InlineSizeEstimatorAnalysis.h" #include "llvm/Analysis/MLInlineAdvisor.h" #include "llvm/Analysis/Utils/TFUtils.h" #include "llvm/IR/LLVMContext.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ManagedStatic.h" #include using namespace llvm; static cl::opt TrainingLog( "training-log", cl::Hidden, cl::desc("Path where the development - mode inlining log is saved.")); static cl::opt TFModelUnderTrainingPath( "ml-inliner-model-under-training", cl::Hidden, cl::desc(R"(Path to SavedModel from the previous training iteration. The directory is also expected to contain a JSON specification of the outputs expected to be logged, where the first entry must be the inlining decision. The file containing the specification should be called output_spec.json. The expected JSON value is an array of dictionaries. Each dictionary should have 2 keys: - "tensor_spec, followed by the TensorSpec description of the output; and - "logging_name", a string indicating the name to use when logging the output values. Example: [ { "logging_name" : "some_name", "tensor_spec" : { "name" : "model_name", "port" : 0, "shape" : [2, 3], "type" : "float" } } ] The first value must always correspond to the decision.)")); static cl::opt TFOutputSpecOverride( "ml-inliner-output-spec-override", cl::Hidden, cl::desc("Override the path to the output spec json file. See " "-ml-inliner-model-under-training documentation for the " "specification of that file.")); static cl::opt TFFeedPrefix("ml-inliner-trained-model-feed-prefix", cl::Hidden, cl::init("action_"), cl::desc("Prefix for feature names.")); namespace { /// An InlineEvent, used by TrainingLogger. struct InlineEvent { /// What the default policy's decision would have been. int64_t DefaultDecision = 0; /// What we advised. When training off the default policy, this is the same as /// DefaultDecision. int64_t AdvisedDecision = 0; /// What actually happened. This would be 'false' in the case of an inline /// error, even if AdvisedDecision were true, otherwise it agrees with /// AdvisedDecision. bool Effect = false; /// What the change in size was: size_after - size_before int64_t Reward = 0; }; /// Collect data we may use for training a model, and write it as a textual /// Tensorflow SequenceExample /// (https://www.tensorflow.org/api_docs/python/tf/train/SequenceExample) /// protobuf (https://developers.google.com/protocol-buffers). /// Because this is a protobuf, we cannot just stream the events as they come. /// Internally, TrainingLogger stores data in column-major format, because that /// lines up with how TF SequenceExample represents it. class ModelUnderTrainingRunner; class TrainingLogger final { public: TrainingLogger(StringRef LogFileName, const ModelUnderTrainingRunner *MUTR); /// Log one inlining event. void logInlineEvent(const InlineEvent &Event, const MLModelRunner &ModelRunner); /// Print the stored tensors. void print(); private: StringRef LogFileName; const ModelUnderTrainingRunner *const MUTR; std::unique_ptr L; std::vector Effects; /// There's at least one output. We'll set this to a different value if MUTR /// is avaliable. size_t OutputCount = 1; /// Set these 2 clearly OOB, to make sure we set them later. size_t DefaultDecisionPos = std::numeric_limits::max(); size_t DecisionPos = std::numeric_limits::max(); }; /// An extension of the MLInlineAdvisor for the 'development' mode, targeting /// the offline training scenario. Note that training happens outside of the /// compiler, this facility is concerned with producing training data ("logs"). /// This InlineAdvisor can operate in the following modes: /// /// 1) collect logs for the default policy. This is useful for bootstrapping /// training, which will be considerably faster by starting from a reasonable /// policy. /// /// 2) collect logs for the ML policy, using a model from a previous /// training. Potentially, that model uses internally some small random /// perturbation of its weights, to induce exploration (setting this up is the /// responsibility of the training algorithm). The logs would then be used to /// retrain and improve on this model. /// /// 3) use the provided model, with no logging. This is useful for end to end /// validation - the model, in this case, is a release candidate and shouldn't /// have random perturbations. It is a convenience feature: rather than needing /// to take the release candidate model and compile it in 'release' mode, /// validate it, then potentially discard it, it's easier to just pass the model /// to the compiler, albeit compilation would be slower, as a one-off. Once the /// model behaves satisfactorily, it can be compiled AOT, for efficiency, in /// release mode. The expectation is that a well-trained model provides a good /// policy over a sufficiently diverse codebase, over many changes (i.e. /// training happens seldom). class DevelopmentModeMLInlineAdvisor : public MLInlineAdvisor { public: DevelopmentModeMLInlineAdvisor( Module &M, ModuleAnalysisManager &MAM, std::unique_ptr ModelRunner, std::function GetDefaultAdvice, bool IsDoingInference, std::unique_ptr Logger); size_t getTotalSizeEstimate(); virtual ~DevelopmentModeMLInlineAdvisor(); void updateNativeSizeEstimate(int64_t Change) { *CurrentNativeSize += Change; } void resetNativeSize(Function *F) { FAM.invalidate(*F); } std::unique_ptr getMandatoryAdvice(CallBase &CB, OptimizationRemarkEmitter &ORE) override; std::unique_ptr getAdviceFromModel(CallBase &CB, OptimizationRemarkEmitter &ORE) override; Optional getNativeSizeEstimate(const Function &F) const; private: bool isLogging() const { return !!Logger; } std::function GetDefaultAdvice; const bool IsDoingInference; std::unique_ptr Logger; const Optional InitialNativeSize; Optional CurrentNativeSize; }; /// A variant of MLInlineAdvice that tracks all non-trivial inlining /// decisions, for training/logging. class LoggingMLInlineAdvice : public MLInlineAdvice { public: LoggingMLInlineAdvice(DevelopmentModeMLInlineAdvisor *Advisor, CallBase &CB, OptimizationRemarkEmitter &ORE, bool Recommendation, TrainingLogger &Logger, Optional CallerSizeEstimateBefore, Optional CalleeSizeEstimateBefore, bool DefaultDecision, bool Mandatory = false) : MLInlineAdvice(Advisor, CB, ORE, Recommendation), Logger(Logger), CallerSizeEstimateBefore(CallerSizeEstimateBefore), CalleeSizeEstimateBefore(CalleeSizeEstimateBefore), DefaultDecision(DefaultDecision), Mandatory(Mandatory) {} virtual ~LoggingMLInlineAdvice() = default; private: DevelopmentModeMLInlineAdvisor *getAdvisor() const { return static_cast(Advisor); } void recordInliningImpl() override { MLInlineAdvice::recordInliningImpl(); getAdvisor()->resetNativeSize(Caller); int Reward = std::numeric_limits::max(); if (InlineSizeEstimatorAnalysis::isEvaluatorRequested() && !getAdvisor()->isForcedToStop()) { int NativeSizeAfter = *getAdvisor()->getNativeSizeEstimate(*Caller) + *CalleeSizeEstimateBefore; Reward = NativeSizeAfter - (*CallerSizeEstimateBefore + *CalleeSizeEstimateBefore); getAdvisor()->updateNativeSizeEstimate(Reward); } log(Reward, /*Success=*/true); } void recordInliningWithCalleeDeletedImpl() override { MLInlineAdvice::recordInliningWithCalleeDeletedImpl(); getAdvisor()->resetNativeSize(Caller); if (InlineSizeEstimatorAnalysis::isEvaluatorRequested() && !getAdvisor()->isForcedToStop()) { int NativeSizeAfter = *getAdvisor()->getNativeSizeEstimate(*Caller); int Reward = NativeSizeAfter - (*CallerSizeEstimateBefore + *CalleeSizeEstimateBefore); getAdvisor()->updateNativeSizeEstimate(Reward); log(Reward, /*Success=*/true); } } void recordUnsuccessfulInliningImpl(const InlineResult &Result) override { MLInlineAdvice::recordUnsuccessfulInliningImpl(Result); log(NoReward, /*Success=*/false); } void recordUnattemptedInliningImpl() override { MLInlineAdvice::recordUnattemptedInliningImpl(); log(NoReward, /*Success=*/false); } void log(int64_t Reward, bool Success) { if (Mandatory) return; InlineEvent Event; Event.AdvisedDecision = isInliningRecommended(); Event.DefaultDecision = DefaultDecision; Event.Effect = Success; Event.Reward = Reward; Logger.logInlineEvent(Event, getAdvisor()->getModelRunner()); } static const int64_t NoReward = 0; TrainingLogger &Logger; const Optional CallerSizeEstimateBefore; const Optional CalleeSizeEstimateBefore; const int64_t DefaultDecision; const int64_t Mandatory; }; /// A pseudo model runner. We use it to store feature values when collecting /// logs for the default policy, but never ask it to 'run'. class NoInferenceModelRunner : public MLModelRunner { public: NoInferenceModelRunner(LLVMContext &Ctx) : MLModelRunner(Ctx), Features(NumberOfFeatures) {} void setFeature(FeatureIndex Index, int64_t Value) override { Features[static_cast(Index)] = Value; } int64_t getFeature(int Index) const override { return Features[Index]; } bool run() override { llvm_unreachable("We shouldn't call run on this model runner."); } private: InlineFeatures Features; }; /// ModelUnderTrainingRunner - training mode implementation. It uses TF C APIs /// to dynamically load and evaluate a TF SavedModel /// (https://www.tensorflow.org/guide/saved_model). Runtime performance is /// sacrificed for ease of use while training. class ModelUnderTrainingRunner final : public MLModelRunner { public: ModelUnderTrainingRunner(LLVMContext &Ctx, const std::string &ModelPath); bool run() override; // Disallows copy and assign. ModelUnderTrainingRunner(const ModelUnderTrainingRunner &) = delete; ModelUnderTrainingRunner & operator=(const ModelUnderTrainingRunner &) = delete; void setFeature(FeatureIndex Index, int64_t Value) override; int64_t getFeature(int Index) const override; bool isValid() const { return !!Evaluator; } const std::vector &outputLoggedFeatureSpecs() const { return OutputSpecs; } const Optional & lastEvaluationResult() const { return LastEvaluationResult; } private: std::unique_ptr Evaluator; std::vector OutputSpecs; Optional LastEvaluationResult; // The training framework needs some additional features. const std::vector TrainingOnlyFeatures{ TensorSpec::createSpec(TFFeedPrefix + "inlining_default", {1}), TensorSpec::createSpec(TFFeedPrefix + "discount", {1}), TensorSpec::createSpec(TFFeedPrefix + "reward", {1}), TensorSpec::createSpec(TFFeedPrefix + "step_type", {1})}; }; } // namespace TrainingLogger::TrainingLogger(StringRef LogFileName, const ModelUnderTrainingRunner *MUTR) : LogFileName(LogFileName), MUTR(MUTR) { // The first output is the inlining decision. if (MUTR) OutputCount = MUTR->outputLoggedFeatureSpecs().size(); std::vector FT; for (size_t I = 0; I < NumberOfFeatures; ++I) FT.push_back( {TensorSpec::createSpec(FeatureNameMap.at(I), {1}), None}); if (MUTR && MUTR->outputLoggedFeatureSpecs().size() > 1) FT.insert(FT.end(), MUTR->outputLoggedFeatureSpecs().begin() + 1, MUTR->outputLoggedFeatureSpecs().end()); DefaultDecisionPos = FT.size(); FT.push_back( {TensorSpec::createSpec(DefaultDecisionName, {1}), None}); DecisionPos = FT.size(); FT.push_back({TensorSpec::createSpec(DecisionName, {1}), None}); L = std::make_unique( FT, TensorSpec::createSpec(RewardName, {1}), InlineSizeEstimatorAnalysis::isEvaluatorRequested()); } /// Log one inlining event. void TrainingLogger::logInlineEvent(const InlineEvent &Event, const MLModelRunner &ModelRunner) { size_t CurrentFeature = 0; for (; CurrentFeature < NumberOfFeatures; ++CurrentFeature) { int64_t F = ModelRunner.getFeature(CurrentFeature); L->logTensorValue(CurrentFeature, &F); } for (size_t I = 1; I < OutputCount; ++I) { const auto &Result = *MUTR->lastEvaluationResult(); auto &Spec = MUTR->outputLoggedFeatureSpecs()[I].Spec; const char *RawData = reinterpret_cast(Result.getUntypedTensorValue(I)); L->logTensorValue(CurrentFeature, RawData, Spec.getElementCount() * Spec.getElementByteSize()); ++CurrentFeature; } assert(CurrentFeature == DefaultDecisionPos); L->logTensorValue(DefaultDecisionPos, &Event.DefaultDecision); L->logTensorValue(DecisionPos, &Event.AdvisedDecision); if (InlineSizeEstimatorAnalysis::isEvaluatorRequested()) L->logReward(Event.Reward); // For debugging / later use Effects.push_back(Event.Effect); } void TrainingLogger::print() { std::error_code EC; raw_fd_ostream OutFile(LogFileName, EC); L->print(OutFile); } DevelopmentModeMLInlineAdvisor::DevelopmentModeMLInlineAdvisor( Module &M, ModuleAnalysisManager &MAM, std::unique_ptr ModelRunner, std::function GetDefaultAdvice, bool IsDoingInference, std::unique_ptr Logger) : MLInlineAdvisor(M, MAM, std::move(ModelRunner)), GetDefaultAdvice(GetDefaultAdvice), IsDoingInference(IsDoingInference), Logger(std::move(Logger)), InitialNativeSize(isLogging() ? getTotalSizeEstimate() : 0), CurrentNativeSize(InitialNativeSize) { // We cannot have the case of neither inference nor logging. assert(IsDoingInference || isLogging()); } DevelopmentModeMLInlineAdvisor::~DevelopmentModeMLInlineAdvisor() { if (isLogging()) Logger->print(); } Optional DevelopmentModeMLInlineAdvisor::getNativeSizeEstimate(const Function &F) const { if (!InlineSizeEstimatorAnalysis::isEvaluatorRequested()) return None; auto &R = FAM.getResult(const_cast(F)); if (!R) { F.getParent()->getContext().emitError( "Native size estimator is not present."); return 0; } return *R; } std::unique_ptr DevelopmentModeMLInlineAdvisor::getMandatoryAdvice( CallBase &CB, OptimizationRemarkEmitter &ORE) { if (!isLogging()) return MLInlineAdvisor::getMandatoryAdvice(CB, ORE); return std::make_unique( /*Advisor=*/this, /*CB=*/CB, /*ORE=*/ORE, /*Recommendation=*/true, /*Logger=*/*Logger, /*CallerSizeEstimateBefore=*/getNativeSizeEstimate(*CB.getCaller()), /*CalleeSizeEstimateBefore=*/ getNativeSizeEstimate(*CB.getCalledFunction()), /*DefaultDecision=*/true, /*Mandatory*/ true); } std::unique_ptr DevelopmentModeMLInlineAdvisor::getAdviceFromModel( CallBase &CB, OptimizationRemarkEmitter &ORE) { if (IsDoingInference && !isLogging()) return MLInlineAdvisor::getAdviceFromModel(CB, ORE); bool DefaultAdvice = GetDefaultAdvice(CB); auto Recommendation = IsDoingInference ? ModelRunner->run() : DefaultAdvice; return std::make_unique( /*Advisor=*/this, /*CB=*/CB, /*ORE=*/ORE, /*Recommendation=*/Recommendation, /*Logger=*/*Logger, /*CallerSizeEstimateBefore=*/getNativeSizeEstimate(*CB.getCaller()), /*CalleeSizeEstimateBefore=*/ getNativeSizeEstimate(*CB.getCalledFunction()), /*DefaultDecision=*/DefaultAdvice); } size_t DevelopmentModeMLInlineAdvisor::getTotalSizeEstimate() { if (!InlineSizeEstimatorAnalysis::isEvaluatorRequested()) return 0; size_t Ret = 0; for (auto &F : M) { if (F.isDeclaration()) continue; if (isFunctionDeleted(&F)) continue; Ret += *getNativeSizeEstimate(F); } return Ret; } ModelUnderTrainingRunner::ModelUnderTrainingRunner(LLVMContext &Ctx, const std::string &ModelPath) : MLModelRunner(Ctx) { std::vector InputSpecs; for (size_t I = 0; I < NumberOfFeatures; ++I) InputSpecs.push_back( TensorSpec::createSpec(TFFeedPrefix + FeatureNameMap[I], {1})); InputSpecs.insert(InputSpecs.end(), TrainingOnlyFeatures.begin(), TrainingOnlyFeatures.end()); if (auto MaybeOutSpecs = loadOutputSpecs(Ctx, DecisionName, ModelPath, TFOutputSpecOverride)) OutputSpecs = std::move(*MaybeOutSpecs); else return; Evaluator = std::make_unique( ModelPath, InputSpecs, [&](size_t I) { return OutputSpecs[I].Spec; }, OutputSpecs.size()); if (!Evaluator || !Evaluator->isValid()) { Ctx.emitError("Failed to create inliner saved model evaluator"); Evaluator.reset(); return; } } bool ModelUnderTrainingRunner::run() { LastEvaluationResult = Evaluator->evaluate(); if (!LastEvaluationResult.hasValue()) { Ctx.emitError("Error evaluating model."); return false; } int64_t Decision = *LastEvaluationResult->getTensorValue(0); return static_cast(Decision); } int64_t ModelUnderTrainingRunner::getFeature(int Index) const { return *Evaluator->getInput(Index); } void ModelUnderTrainingRunner::setFeature(FeatureIndex Index, int64_t Value) { size_t NumericIndex = static_cast(Index); *(Evaluator->getInput(NumericIndex)) = Value; } std::unique_ptr llvm::getDevelopmentModeAdvisor( Module &M, ModuleAnalysisManager &MAM, std::function GetDefaultAdvice) { auto &Ctx = M.getContext(); std::unique_ptr Runner; ModelUnderTrainingRunner *MUTRPtr = nullptr; bool IsDoingInference = false; if (TFModelUnderTrainingPath.empty()) Runner.reset(new NoInferenceModelRunner(Ctx)); else { auto MUTR = std::make_unique( Ctx, TFModelUnderTrainingPath); if (!MUTR || !MUTR->isValid()) { Ctx.emitError("Could not load the policy model from the provided path"); return nullptr; } IsDoingInference = true; MUTRPtr = MUTR.get(); Runner = std::move(MUTR); } std::unique_ptr Logger; if (!TrainingLog.empty()) Logger = std::make_unique(TrainingLog, MUTRPtr); return std::make_unique( M, MAM, std::move(Runner), GetDefaultAdvice, IsDoingInference, std::move(Logger)); } #endif // defined(LLVM_HAVE_TF_API)