//===- llvm/Analysis/IVDescriptors.cpp - IndVar Descriptors -----*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file "describes" induction and recurrence variables. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/IVDescriptors.h" #include "llvm/ADT/ScopeExit.h" #include "llvm/Analysis/BasicAliasAnalysis.h" #include "llvm/Analysis/DemandedBits.h" #include "llvm/Analysis/DomTreeUpdater.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/MustExecute.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Module.h" #include "llvm/IR/PatternMatch.h" #include "llvm/IR/ValueHandle.h" #include "llvm/Pass.h" #include "llvm/Support/Debug.h" #include "llvm/Support/KnownBits.h" using namespace llvm; using namespace llvm::PatternMatch; #define DEBUG_TYPE "iv-descriptors" bool RecurrenceDescriptor::areAllUsesIn(Instruction *I, SmallPtrSetImpl &Set) { for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) if (!Set.count(dyn_cast(*Use))) return false; return true; } bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) { switch (Kind) { default: break; case RK_IntegerAdd: case RK_IntegerMult: case RK_IntegerOr: case RK_IntegerAnd: case RK_IntegerXor: case RK_IntegerMinMax: return true; } return false; } bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) { return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind); } bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) { switch (Kind) { default: break; case RK_IntegerAdd: case RK_IntegerMult: case RK_FloatAdd: case RK_FloatMult: return true; } return false; } /// Determines if Phi may have been type-promoted. If Phi has a single user /// that ANDs the Phi with a type mask, return the user. RT is updated to /// account for the narrower bit width represented by the mask, and the AND /// instruction is added to CI. static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT, SmallPtrSetImpl &Visited, SmallPtrSetImpl &CI) { if (!Phi->hasOneUse()) return Phi; const APInt *M = nullptr; Instruction *I, *J = cast(Phi->use_begin()->getUser()); // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT // with a new integer type of the corresponding bit width. if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) { int32_t Bits = (*M + 1).exactLogBase2(); if (Bits > 0) { RT = IntegerType::get(Phi->getContext(), Bits); Visited.insert(Phi); CI.insert(J); return J; } } return Phi; } /// Compute the minimal bit width needed to represent a reduction whose exit /// instruction is given by Exit. static std::pair computeRecurrenceType(Instruction *Exit, DemandedBits *DB, AssumptionCache *AC, DominatorTree *DT) { bool IsSigned = false; const DataLayout &DL = Exit->getModule()->getDataLayout(); uint64_t MaxBitWidth = DL.getTypeSizeInBits(Exit->getType()); if (DB) { // Use the demanded bits analysis to determine the bits that are live out // of the exit instruction, rounding up to the nearest power of two. If the // use of demanded bits results in a smaller bit width, we know the value // must be positive (i.e., IsSigned = false), because if this were not the // case, the sign bit would have been demanded. auto Mask = DB->getDemandedBits(Exit); MaxBitWidth = Mask.getBitWidth() - Mask.countLeadingZeros(); } if (MaxBitWidth == DL.getTypeSizeInBits(Exit->getType()) && AC && DT) { // If demanded bits wasn't able to limit the bit width, we can try to use // value tracking instead. This can be the case, for example, if the value // may be negative. auto NumSignBits = ComputeNumSignBits(Exit, DL, 0, AC, nullptr, DT); auto NumTypeBits = DL.getTypeSizeInBits(Exit->getType()); MaxBitWidth = NumTypeBits - NumSignBits; KnownBits Bits = computeKnownBits(Exit, DL); if (!Bits.isNonNegative()) { // If the value is not known to be non-negative, we set IsSigned to true, // meaning that we will use sext instructions instead of zext // instructions to restore the original type. IsSigned = true; if (!Bits.isNegative()) // If the value is not known to be negative, we don't known what the // upper bit is, and therefore, we don't know what kind of extend we // will need. In this case, just increase the bit width by one bit and // use sext. ++MaxBitWidth; } } if (!isPowerOf2_64(MaxBitWidth)) MaxBitWidth = NextPowerOf2(MaxBitWidth); return std::make_pair(Type::getIntNTy(Exit->getContext(), MaxBitWidth), IsSigned); } /// Collect cast instructions that can be ignored in the vectorizer's cost /// model, given a reduction exit value and the minimal type in which the /// reduction can be represented. static void collectCastsToIgnore(Loop *TheLoop, Instruction *Exit, Type *RecurrenceType, SmallPtrSetImpl &Casts) { SmallVector Worklist; SmallPtrSet Visited; Worklist.push_back(Exit); while (!Worklist.empty()) { Instruction *Val = Worklist.pop_back_val(); Visited.insert(Val); if (auto *Cast = dyn_cast(Val)) if (Cast->getSrcTy() == RecurrenceType) { // If the source type of a cast instruction is equal to the recurrence // type, it will be eliminated, and should be ignored in the vectorizer // cost model. Casts.insert(Cast); continue; } // Add all operands to the work list if they are loop-varying values that // we haven't yet visited. for (Value *O : cast(Val)->operands()) if (auto *I = dyn_cast(O)) if (TheLoop->contains(I) && !Visited.count(I)) Worklist.push_back(I); } } bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind, Loop *TheLoop, bool HasFunNoNaNAttr, RecurrenceDescriptor &RedDes, DemandedBits *DB, AssumptionCache *AC, DominatorTree *DT) { if (Phi->getNumIncomingValues() != 2) return false; // Reduction variables are only found in the loop header block. if (Phi->getParent() != TheLoop->getHeader()) return false; // Obtain the reduction start value from the value that comes from the loop // preheader. Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); // ExitInstruction is the single value which is used outside the loop. // We only allow for a single reduction value to be used outside the loop. // This includes users of the reduction, variables (which form a cycle // which ends in the phi node). Instruction *ExitInstruction = nullptr; // Indicates that we found a reduction operation in our scan. bool FoundReduxOp = false; // We start with the PHI node and scan for all of the users of this // instruction. All users must be instructions that can be used as reduction // variables (such as ADD). We must have a single out-of-block user. The cycle // must include the original PHI. bool FoundStartPHI = false; // To recognize min/max patterns formed by a icmp select sequence, we store // the number of instruction we saw from the recognized min/max pattern, // to make sure we only see exactly the two instructions. unsigned NumCmpSelectPatternInst = 0; InstDesc ReduxDesc(false, nullptr); // Data used for determining if the recurrence has been type-promoted. Type *RecurrenceType = Phi->getType(); SmallPtrSet CastInsts; Instruction *Start = Phi; bool IsSigned = false; SmallPtrSet VisitedInsts; SmallVector Worklist; // Return early if the recurrence kind does not match the type of Phi. If the // recurrence kind is arithmetic, we attempt to look through AND operations // resulting from the type promotion performed by InstCombine. Vector // operations are not limited to the legal integer widths, so we may be able // to evaluate the reduction in the narrower width. if (RecurrenceType->isFloatingPointTy()) { if (!isFloatingPointRecurrenceKind(Kind)) return false; } else { if (!isIntegerRecurrenceKind(Kind)) return false; if (isArithmeticRecurrenceKind(Kind)) Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts); } Worklist.push_back(Start); VisitedInsts.insert(Start); // Start with all flags set because we will intersect this with the reduction // flags from all the reduction operations. FastMathFlags FMF = FastMathFlags::getFast(); // A value in the reduction can be used: // - By the reduction: // - Reduction operation: // - One use of reduction value (safe). // - Multiple use of reduction value (not safe). // - PHI: // - All uses of the PHI must be the reduction (safe). // - Otherwise, not safe. // - By instructions outside of the loop (safe). // * One value may have several outside users, but all outside // uses must be of the same value. // - By an instruction that is not part of the reduction (not safe). // This is either: // * An instruction type other than PHI or the reduction operation. // * A PHI in the header other than the initial PHI. while (!Worklist.empty()) { Instruction *Cur = Worklist.back(); Worklist.pop_back(); // No Users. // If the instruction has no users then this is a broken chain and can't be // a reduction variable. if (Cur->use_empty()) return false; bool IsAPhi = isa(Cur); // A header PHI use other than the original PHI. if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) return false; // Reductions of instructions such as Div, and Sub is only possible if the // LHS is the reduction variable. if (!Cur->isCommutative() && !IsAPhi && !isa(Cur) && !isa(Cur) && !isa(Cur) && !VisitedInsts.count(dyn_cast(Cur->getOperand(0)))) return false; // Any reduction instruction must be of one of the allowed kinds. We ignore // the starting value (the Phi or an AND instruction if the Phi has been // type-promoted). if (Cur != Start) { ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr); if (!ReduxDesc.isRecurrence()) return false; // FIXME: FMF is allowed on phi, but propagation is not handled correctly. if (isa(ReduxDesc.getPatternInst()) && !IsAPhi) FMF &= ReduxDesc.getPatternInst()->getFastMathFlags(); } bool IsASelect = isa(Cur); // A conditional reduction operation must only have 2 or less uses in // VisitedInsts. if (IsASelect && (Kind == RK_FloatAdd || Kind == RK_FloatMult) && hasMultipleUsesOf(Cur, VisitedInsts, 2)) return false; // A reduction operation must only have one use of the reduction value. if (!IsAPhi && !IsASelect && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax && hasMultipleUsesOf(Cur, VisitedInsts, 1)) return false; // All inputs to a PHI node must be a reduction value. if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) return false; if (Kind == RK_IntegerMinMax && (isa(Cur) || isa(Cur))) ++NumCmpSelectPatternInst; if (Kind == RK_FloatMinMax && (isa(Cur) || isa(Cur))) ++NumCmpSelectPatternInst; // Check whether we found a reduction operator. FoundReduxOp |= !IsAPhi && Cur != Start; // Process users of current instruction. Push non-PHI nodes after PHI nodes // onto the stack. This way we are going to have seen all inputs to PHI // nodes once we get to them. SmallVector NonPHIs; SmallVector PHIs; for (User *U : Cur->users()) { Instruction *UI = cast(U); // Check if we found the exit user. BasicBlock *Parent = UI->getParent(); if (!TheLoop->contains(Parent)) { // If we already know this instruction is used externally, move on to // the next user. if (ExitInstruction == Cur) continue; // Exit if you find multiple values used outside or if the header phi // node is being used. In this case the user uses the value of the // previous iteration, in which case we would loose "VF-1" iterations of // the reduction operation if we vectorize. if (ExitInstruction != nullptr || Cur == Phi) return false; // The instruction used by an outside user must be the last instruction // before we feed back to the reduction phi. Otherwise, we loose VF-1 // operations on the value. if (!is_contained(Phi->operands(), Cur)) return false; ExitInstruction = Cur; continue; } // Process instructions only once (termination). Each reduction cycle // value must only be used once, except by phi nodes and min/max // reductions which are represented as a cmp followed by a select. InstDesc IgnoredVal(false, nullptr); if (VisitedInsts.insert(UI).second) { if (isa(UI)) PHIs.push_back(UI); else NonPHIs.push_back(UI); } else if (!isa(UI) && ((!isa(UI) && !isa(UI) && !isa(UI)) || (!isConditionalRdxPattern(Kind, UI).isRecurrence() && !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence()))) return false; // Remember that we completed the cycle. if (UI == Phi) FoundStartPHI = true; } Worklist.append(PHIs.begin(), PHIs.end()); Worklist.append(NonPHIs.begin(), NonPHIs.end()); } // This means we have seen one but not the other instruction of the // pattern or more than just a select and cmp. if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) && NumCmpSelectPatternInst != 2) return false; if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) return false; if (Start != Phi) { // If the starting value is not the same as the phi node, we speculatively // looked through an 'and' instruction when evaluating a potential // arithmetic reduction to determine if it may have been type-promoted. // // We now compute the minimal bit width that is required to represent the // reduction. If this is the same width that was indicated by the 'and', we // can represent the reduction in the smaller type. The 'and' instruction // will be eliminated since it will essentially be a cast instruction that // can be ignore in the cost model. If we compute a different type than we // did when evaluating the 'and', the 'and' will not be eliminated, and we // will end up with different kinds of operations in the recurrence // expression (e.g., RK_IntegerAND, RK_IntegerADD). We give up if this is // the case. // // The vectorizer relies on InstCombine to perform the actual // type-shrinking. It does this by inserting instructions to truncate the // exit value of the reduction to the width indicated by RecurrenceType and // then extend this value back to the original width. If IsSigned is false, // a 'zext' instruction will be generated; otherwise, a 'sext' will be // used. // // TODO: We should not rely on InstCombine to rewrite the reduction in the // smaller type. We should just generate a correctly typed expression // to begin with. Type *ComputedType; std::tie(ComputedType, IsSigned) = computeRecurrenceType(ExitInstruction, DB, AC, DT); if (ComputedType != RecurrenceType) return false; // The recurrence expression will be represented in a narrower type. If // there are any cast instructions that will be unnecessary, collect them // in CastInsts. Note that the 'and' instruction was already included in // this list. // // TODO: A better way to represent this may be to tag in some way all the // instructions that are a part of the reduction. The vectorizer cost // model could then apply the recurrence type to these instructions, // without needing a white list of instructions to ignore. // This may also be useful for the inloop reductions, if it can be // kept simple enough. collectCastsToIgnore(TheLoop, ExitInstruction, RecurrenceType, CastInsts); } // We found a reduction var if we have reached the original phi node and we // only have a single instruction with out-of-loop users. // The ExitInstruction(Instruction which is allowed to have out-of-loop users) // is saved as part of the RecurrenceDescriptor. // Save the description of this reduction variable. RecurrenceDescriptor RD( RdxStart, ExitInstruction, Kind, FMF, ReduxDesc.getMinMaxKind(), ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts); RedDes = RD; return true; } /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction /// pattern corresponding to a min(X, Y) or max(X, Y). RecurrenceDescriptor::InstDesc RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) { assert((isa(I) || isa(I) || isa(I)) && "Expect a select instruction"); Instruction *Cmp = nullptr; SelectInst *Select = nullptr; // We must handle the select(cmp()) as a single instruction. Advance to the // select. if ((Cmp = dyn_cast(I)) || (Cmp = dyn_cast(I))) { if (!Cmp->hasOneUse() || !(Select = dyn_cast(*I->user_begin()))) return InstDesc(false, I); return InstDesc(Select, Prev.getMinMaxKind()); } // Only handle single use cases for now. if (!(Select = dyn_cast(I))) return InstDesc(false, I); if (!(Cmp = dyn_cast(I->getOperand(0))) && !(Cmp = dyn_cast(I->getOperand(0)))) return InstDesc(false, I); if (!Cmp->hasOneUse()) return InstDesc(false, I); Value *CmpLeft; Value *CmpRight; // Look for a min/max pattern. if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) return InstDesc(Select, MRK_UIntMin); else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) return InstDesc(Select, MRK_UIntMax); else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) return InstDesc(Select, MRK_SIntMax); else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) return InstDesc(Select, MRK_SIntMin); else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) return InstDesc(Select, MRK_FloatMin); else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) return InstDesc(Select, MRK_FloatMax); else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) return InstDesc(Select, MRK_FloatMin); else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) return InstDesc(Select, MRK_FloatMax); return InstDesc(false, I); } /// Returns true if the select instruction has users in the compare-and-add /// reduction pattern below. The select instruction argument is the last one /// in the sequence. /// /// %sum.1 = phi ... /// ... /// %cmp = fcmp pred %0, %CFP /// %add = fadd %0, %sum.1 /// %sum.2 = select %cmp, %add, %sum.1 RecurrenceDescriptor::InstDesc RecurrenceDescriptor::isConditionalRdxPattern( RecurrenceKind Kind, Instruction *I) { SelectInst *SI = dyn_cast(I); if (!SI) return InstDesc(false, I); CmpInst *CI = dyn_cast(SI->getCondition()); // Only handle single use cases for now. if (!CI || !CI->hasOneUse()) return InstDesc(false, I); Value *TrueVal = SI->getTrueValue(); Value *FalseVal = SI->getFalseValue(); // Handle only when either of operands of select instruction is a PHI // node for now. if ((isa(*TrueVal) && isa(*FalseVal)) || (!isa(*TrueVal) && !isa(*FalseVal))) return InstDesc(false, I); Instruction *I1 = isa(*TrueVal) ? dyn_cast(FalseVal) : dyn_cast(TrueVal); if (!I1 || !I1->isBinaryOp()) return InstDesc(false, I); Value *Op1, *Op2; if ((m_FAdd(m_Value(Op1), m_Value(Op2)).match(I1) || m_FSub(m_Value(Op1), m_Value(Op2)).match(I1)) && I1->isFast()) return InstDesc(Kind == RK_FloatAdd, SI); if (m_FMul(m_Value(Op1), m_Value(Op2)).match(I1) && (I1->isFast())) return InstDesc(Kind == RK_FloatMult, SI); return InstDesc(false, I); } RecurrenceDescriptor::InstDesc RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind, InstDesc &Prev, bool HasFunNoNaNAttr) { Instruction *UAI = Prev.getUnsafeAlgebraInst(); if (!UAI && isa(I) && !I->hasAllowReassoc()) UAI = I; // Found an unsafe (unvectorizable) algebra instruction. switch (I->getOpcode()) { default: return InstDesc(false, I); case Instruction::PHI: return InstDesc(I, Prev.getMinMaxKind(), Prev.getUnsafeAlgebraInst()); case Instruction::Sub: case Instruction::Add: return InstDesc(Kind == RK_IntegerAdd, I); case Instruction::Mul: return InstDesc(Kind == RK_IntegerMult, I); case Instruction::And: return InstDesc(Kind == RK_IntegerAnd, I); case Instruction::Or: return InstDesc(Kind == RK_IntegerOr, I); case Instruction::Xor: return InstDesc(Kind == RK_IntegerXor, I); case Instruction::FDiv: case Instruction::FMul: return InstDesc(Kind == RK_FloatMult, I, UAI); case Instruction::FSub: case Instruction::FAdd: return InstDesc(Kind == RK_FloatAdd, I, UAI); case Instruction::Select: if (Kind == RK_FloatAdd || Kind == RK_FloatMult) return isConditionalRdxPattern(Kind, I); LLVM_FALLTHROUGH; case Instruction::FCmp: case Instruction::ICmp: if (Kind != RK_IntegerMinMax && (!HasFunNoNaNAttr || Kind != RK_FloatMinMax)) return InstDesc(false, I); return isMinMaxSelectCmpPattern(I, Prev); } } bool RecurrenceDescriptor::hasMultipleUsesOf( Instruction *I, SmallPtrSetImpl &Insts, unsigned MaxNumUses) { unsigned NumUses = 0; for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) { if (Insts.count(dyn_cast(*Use))) ++NumUses; if (NumUses > MaxNumUses) return true; } return false; } bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop, RecurrenceDescriptor &RedDes, DemandedBits *DB, AssumptionCache *AC, DominatorTree *DT) { BasicBlock *Header = TheLoop->getHeader(); Function &F = *Header->getParent(); bool HasFunNoNaNAttr = F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB, AC, DT)) { LLVM_DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n"); return true; } if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes, DB, AC, DT)) { LLVM_DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n"); return true; } if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes, DB, AC, DT)) { LLVM_DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n"); return true; } if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes, DB, AC, DT)) { LLVM_DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n"); return true; } if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes, DB, AC, DT)) { LLVM_DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n"); return true; } if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr, RedDes, DB, AC, DT)) { LLVM_DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n"); return true; } if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes, DB, AC, DT)) { LLVM_DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n"); return true; } if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB, AC, DT)) { LLVM_DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n"); return true; } if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes, DB, AC, DT)) { LLVM_DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi << "\n"); return true; } // Not a reduction of known type. return false; } bool RecurrenceDescriptor::isFirstOrderRecurrence( PHINode *Phi, Loop *TheLoop, DenseMap &SinkAfter, DominatorTree *DT) { // Ensure the phi node is in the loop header and has two incoming values. if (Phi->getParent() != TheLoop->getHeader() || Phi->getNumIncomingValues() != 2) return false; // Ensure the loop has a preheader and a single latch block. The loop // vectorizer will need the latch to set up the next iteration of the loop. auto *Preheader = TheLoop->getLoopPreheader(); auto *Latch = TheLoop->getLoopLatch(); if (!Preheader || !Latch) return false; // Ensure the phi node's incoming blocks are the loop preheader and latch. if (Phi->getBasicBlockIndex(Preheader) < 0 || Phi->getBasicBlockIndex(Latch) < 0) return false; // Get the previous value. The previous value comes from the latch edge while // the initial value comes form the preheader edge. auto *Previous = dyn_cast(Phi->getIncomingValueForBlock(Latch)); if (!Previous || !TheLoop->contains(Previous) || isa(Previous) || SinkAfter.count(Previous)) // Cannot rely on dominance due to motion. return false; // Ensure every user of the phi node is dominated by the previous value. // The dominance requirement ensures the loop vectorizer will not need to // vectorize the initial value prior to the first iteration of the loop. // TODO: Consider extending this sinking to handle memory instructions and // phis with multiple users. // Returns true, if all users of I are dominated by DominatedBy. auto allUsesDominatedBy = [DT](Instruction *I, Instruction *DominatedBy) { return all_of(I->uses(), [DT, DominatedBy](Use &U) { return DT->dominates(DominatedBy, U); }); }; if (Phi->hasOneUse()) { Instruction *I = Phi->user_back(); // If the user of the PHI is also the incoming value, we potentially have a // reduction and which cannot be handled by sinking. if (Previous == I) return false; // We cannot sink terminator instructions. if (I->getParent()->getTerminator() == I) return false; // Do not try to sink an instruction multiple times (if multiple operands // are first order recurrences). // TODO: We can support this case, by sinking the instruction after the // 'deepest' previous instruction. if (SinkAfter.find(I) != SinkAfter.end()) return false; if (DT->dominates(Previous, I)) // We already are good w/o sinking. return true; // We can sink any instruction without side effects, as long as all users // are dominated by the instruction we are sinking after. if (I->getParent() == Phi->getParent() && !I->mayHaveSideEffects() && allUsesDominatedBy(I, Previous)) { SinkAfter[I] = Previous; return true; } } return allUsesDominatedBy(Phi, Previous); } /// This function returns the identity element (or neutral element) for /// the operation K. Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K, MinMaxRecurrenceKind MK, Type *Tp) { switch (K) { case RK_IntegerXor: case RK_IntegerAdd: case RK_IntegerOr: // Adding, Xoring, Oring zero to a number does not change it. return ConstantInt::get(Tp, 0); case RK_IntegerMult: // Multiplying a number by 1 does not change it. return ConstantInt::get(Tp, 1); case RK_IntegerAnd: // AND-ing a number with an all-1 value does not change it. return ConstantInt::get(Tp, -1, true); case RK_FloatMult: // Multiplying a number by 1 does not change it. return ConstantFP::get(Tp, 1.0L); case RK_FloatAdd: // Adding zero to a number does not change it. return ConstantFP::get(Tp, 0.0L); case RK_IntegerMinMax: case RK_FloatMinMax: switch (MK) { case MRK_UIntMin: return ConstantInt::get(Tp, -1); case MRK_UIntMax: return ConstantInt::get(Tp, 0); case MRK_SIntMin: return ConstantInt::get( Tp, APInt::getSignedMaxValue(Tp->getIntegerBitWidth())); case MRK_SIntMax: return ConstantInt::get( Tp, APInt::getSignedMinValue(Tp->getIntegerBitWidth())); case MRK_FloatMin: return ConstantFP::getInfinity(Tp, true); case MRK_FloatMax: return ConstantFP::getInfinity(Tp, false); default: llvm_unreachable("Unknown recurrence kind"); } default: llvm_unreachable("Unknown recurrence kind"); } } /// This function translates the recurrence kind to an LLVM binary operator. unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) { switch (Kind) { case RK_IntegerAdd: return Instruction::Add; case RK_IntegerMult: return Instruction::Mul; case RK_IntegerOr: return Instruction::Or; case RK_IntegerAnd: return Instruction::And; case RK_IntegerXor: return Instruction::Xor; case RK_FloatMult: return Instruction::FMul; case RK_FloatAdd: return Instruction::FAdd; case RK_IntegerMinMax: return Instruction::ICmp; case RK_FloatMinMax: return Instruction::FCmp; default: llvm_unreachable("Unknown recurrence operation"); } } SmallVector RecurrenceDescriptor::getReductionOpChain(PHINode *Phi, Loop *L) const { SmallVector ReductionOperations; unsigned RedOp = getRecurrenceBinOp(Kind); // Search down from the Phi to the LoopExitInstr, looking for instructions // with a single user of the correct type for the reduction. // Note that we check that the type of the operand is correct for each item in // the chain, including the last (the loop exit value). This can come up from // sub, which would otherwise be treated as an add reduction. MinMax also need // to check for a pair of icmp/select, for which we use getNextInstruction and // isCorrectOpcode functions to step the right number of instruction, and // check the icmp/select pair. // FIXME: We also do not attempt to look through Phi/Select's yet, which might // be part of the reduction chain, or attempt to looks through And's to find a // smaller bitwidth. Subs are also currently not allowed (which are usually // treated as part of a add reduction) as they are expected to generally be // more expensive than out-of-loop reductions, and need to be costed more // carefully. unsigned ExpectedUses = 1; if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) ExpectedUses = 2; auto getNextInstruction = [&](Instruction *Cur) { if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) { // We are expecting a icmp/select pair, which we go to the next select // instruction if we can. We already know that Cur has 2 uses. if (isa(*Cur->user_begin())) return cast(*Cur->user_begin()); else return cast(*std::next(Cur->user_begin())); } return cast(*Cur->user_begin()); }; auto isCorrectOpcode = [&](Instruction *Cur) { if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) { Value *LHS, *RHS; return SelectPatternResult::isMinOrMax( matchSelectPattern(Cur, LHS, RHS).Flavor); } return Cur->getOpcode() == RedOp; }; // The loop exit instruction we check first (as a quick test) but add last. We // check the opcode is correct (and dont allow them to be Subs) and that they // have expected to have the expected number of uses. They will have one use // from the phi and one from a LCSSA value, no matter the type. if (!isCorrectOpcode(LoopExitInstr) || !LoopExitInstr->hasNUses(2)) return {}; // Check that the Phi has one (or two for min/max) uses. if (!Phi->hasNUses(ExpectedUses)) return {}; Instruction *Cur = getNextInstruction(Phi); // Each other instruction in the chain should have the expected number of uses // and be the correct opcode. while (Cur != LoopExitInstr) { if (!isCorrectOpcode(Cur) || !Cur->hasNUses(ExpectedUses)) return {}; ReductionOperations.push_back(Cur); Cur = getNextInstruction(Cur); } ReductionOperations.push_back(Cur); return ReductionOperations; } InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K, const SCEV *Step, BinaryOperator *BOp, SmallVectorImpl *Casts) : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) { assert(IK != IK_NoInduction && "Not an induction"); // Start value type should match the induction kind and the value // itself should not be null. assert(StartValue && "StartValue is null"); assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) && "StartValue is not a pointer for pointer induction"); assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) && "StartValue is not an integer for integer induction"); // Check the Step Value. It should be non-zero integer value. assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) && "Step value is zero"); assert((IK != IK_PtrInduction || getConstIntStepValue()) && "Step value should be constant for pointer induction"); assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) && "StepValue is not an integer"); assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) && "StepValue is not FP for FpInduction"); assert((IK != IK_FpInduction || (InductionBinOp && (InductionBinOp->getOpcode() == Instruction::FAdd || InductionBinOp->getOpcode() == Instruction::FSub))) && "Binary opcode should be specified for FP induction"); if (Casts) { for (auto &Inst : *Casts) { RedundantCasts.push_back(Inst); } } } int InductionDescriptor::getConsecutiveDirection() const { ConstantInt *ConstStep = getConstIntStepValue(); if (ConstStep && (ConstStep->isOne() || ConstStep->isMinusOne())) return ConstStep->getSExtValue(); return 0; } ConstantInt *InductionDescriptor::getConstIntStepValue() const { if (isa(Step)) return dyn_cast(cast(Step)->getValue()); return nullptr; } bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE, InductionDescriptor &D) { // Here we only handle FP induction variables. assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type"); if (TheLoop->getHeader() != Phi->getParent()) return false; // The loop may have multiple entrances or multiple exits; we can analyze // this phi if it has a unique entry value and a unique backedge value. if (Phi->getNumIncomingValues() != 2) return false; Value *BEValue = nullptr, *StartValue = nullptr; if (TheLoop->contains(Phi->getIncomingBlock(0))) { BEValue = Phi->getIncomingValue(0); StartValue = Phi->getIncomingValue(1); } else { assert(TheLoop->contains(Phi->getIncomingBlock(1)) && "Unexpected Phi node in the loop"); BEValue = Phi->getIncomingValue(1); StartValue = Phi->getIncomingValue(0); } BinaryOperator *BOp = dyn_cast(BEValue); if (!BOp) return false; Value *Addend = nullptr; if (BOp->getOpcode() == Instruction::FAdd) { if (BOp->getOperand(0) == Phi) Addend = BOp->getOperand(1); else if (BOp->getOperand(1) == Phi) Addend = BOp->getOperand(0); } else if (BOp->getOpcode() == Instruction::FSub) if (BOp->getOperand(0) == Phi) Addend = BOp->getOperand(1); if (!Addend) return false; // The addend should be loop invariant if (auto *I = dyn_cast(Addend)) if (TheLoop->contains(I)) return false; // FP Step has unknown SCEV const SCEV *Step = SE->getUnknown(Addend); D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp); return true; } /// This function is called when we suspect that the update-chain of a phi node /// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts, /// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime /// predicate P under which the SCEV expression for the phi can be the /// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the /// cast instructions that are involved in the update-chain of this induction. /// A caller that adds the required runtime predicate can be free to drop these /// cast instructions, and compute the phi using \p AR (instead of some scev /// expression with casts). /// /// For example, without a predicate the scev expression can take the following /// form: /// (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy) /// /// It corresponds to the following IR sequence: /// %for.body: /// %x = phi i64 [ 0, %ph ], [ %add, %for.body ] /// %casted_phi = "ExtTrunc i64 %x" /// %add = add i64 %casted_phi, %step /// /// where %x is given in \p PN, /// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate, /// and the IR sequence that "ExtTrunc i64 %x" represents can take one of /// several forms, for example, such as: /// ExtTrunc1: %casted_phi = and %x, 2^n-1 /// or: /// ExtTrunc2: %t = shl %x, m /// %casted_phi = ashr %t, m /// /// If we are able to find such sequence, we return the instructions /// we found, namely %casted_phi and the instructions on its use-def chain up /// to the phi (not including the phi). static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE, const SCEVUnknown *PhiScev, const SCEVAddRecExpr *AR, SmallVectorImpl &CastInsts) { assert(CastInsts.empty() && "CastInsts is expected to be empty."); auto *PN = cast(PhiScev->getValue()); assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression"); const Loop *L = AR->getLoop(); // Find any cast instructions that participate in the def-use chain of // PhiScev in the loop. // FORNOW/TODO: We currently expect the def-use chain to include only // two-operand instructions, where one of the operands is an invariant. // createAddRecFromPHIWithCasts() currently does not support anything more // involved than that, so we keep the search simple. This can be // extended/generalized as needed. auto getDef = [&](const Value *Val) -> Value * { const BinaryOperator *BinOp = dyn_cast(Val); if (!BinOp) return nullptr; Value *Op0 = BinOp->getOperand(0); Value *Op1 = BinOp->getOperand(1); Value *Def = nullptr; if (L->isLoopInvariant(Op0)) Def = Op1; else if (L->isLoopInvariant(Op1)) Def = Op0; return Def; }; // Look for the instruction that defines the induction via the // loop backedge. BasicBlock *Latch = L->getLoopLatch(); if (!Latch) return false; Value *Val = PN->getIncomingValueForBlock(Latch); if (!Val) return false; // Follow the def-use chain until the induction phi is reached. // If on the way we encounter a Value that has the same SCEV Expr as the // phi node, we can consider the instructions we visit from that point // as part of the cast-sequence that can be ignored. bool InCastSequence = false; auto *Inst = dyn_cast(Val); while (Val != PN) { // If we encountered a phi node other than PN, or if we left the loop, // we bail out. if (!Inst || !L->contains(Inst)) { return false; } auto *AddRec = dyn_cast(PSE.getSCEV(Val)); if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR)) InCastSequence = true; if (InCastSequence) { // Only the last instruction in the cast sequence is expected to have // uses outside the induction def-use chain. if (!CastInsts.empty()) if (!Inst->hasOneUse()) return false; CastInsts.push_back(Inst); } Val = getDef(Val); if (!Val) return false; Inst = dyn_cast(Val); } return InCastSequence; } bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop, PredicatedScalarEvolution &PSE, InductionDescriptor &D, bool Assume) { Type *PhiTy = Phi->getType(); // Handle integer and pointer inductions variables. // Now we handle also FP induction but not trying to make a // recurrent expression from the PHI node in-place. if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() && !PhiTy->isFloatTy() && !PhiTy->isDoubleTy() && !PhiTy->isHalfTy()) return false; if (PhiTy->isFloatingPointTy()) return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D); const SCEV *PhiScev = PSE.getSCEV(Phi); const auto *AR = dyn_cast(PhiScev); // We need this expression to be an AddRecExpr. if (Assume && !AR) AR = PSE.getAsAddRec(Phi); if (!AR) { LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); return false; } // Record any Cast instructions that participate in the induction update const auto *SymbolicPhi = dyn_cast(PhiScev); // If we started from an UnknownSCEV, and managed to build an addRecurrence // only after enabling Assume with PSCEV, this means we may have encountered // cast instructions that required adding a runtime check in order to // guarantee the correctness of the AddRecurrence respresentation of the // induction. if (PhiScev != AR && SymbolicPhi) { SmallVector Casts; if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts)) return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts); } return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR); } bool InductionDescriptor::isInductionPHI( PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE, InductionDescriptor &D, const SCEV *Expr, SmallVectorImpl *CastsToIgnore) { Type *PhiTy = Phi->getType(); // We only handle integer and pointer inductions variables. if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) return false; // Check that the PHI is consecutive. const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi); const SCEVAddRecExpr *AR = dyn_cast(PhiScev); if (!AR) { LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); return false; } if (AR->getLoop() != TheLoop) { // FIXME: We should treat this as a uniform. Unfortunately, we // don't currently know how to handled uniform PHIs. LLVM_DEBUG( dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n"); return false; } Value *StartValue = Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader()); BasicBlock *Latch = AR->getLoop()->getLoopLatch(); if (!Latch) return false; BinaryOperator *BOp = dyn_cast(Phi->getIncomingValueForBlock(Latch)); const SCEV *Step = AR->getStepRecurrence(*SE); // Calculate the pointer stride and check if it is consecutive. // The stride may be a constant or a loop invariant integer value. const SCEVConstant *ConstStep = dyn_cast(Step); if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop)) return false; if (PhiTy->isIntegerTy()) { D = InductionDescriptor(StartValue, IK_IntInduction, Step, BOp, CastsToIgnore); return true; } assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); // Pointer induction should be a constant. if (!ConstStep) return false; ConstantInt *CV = ConstStep->getValue(); Type *PointerElementType = PhiTy->getPointerElementType(); // The pointer stride cannot be determined if the pointer element type is not // sized. if (!PointerElementType->isSized()) return false; const DataLayout &DL = Phi->getModule()->getDataLayout(); int64_t Size = static_cast(DL.getTypeAllocSize(PointerElementType)); if (!Size) return false; int64_t CVSize = CV->getSExtValue(); if (CVSize % Size) return false; auto *StepValue = SE->getConstant(CV->getType(), CVSize / Size, true /* signed */); D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue, BOp); return true; }