//===- llvm/CodeGen/GlobalISel/Utils.cpp -------------------------*- C++ -*-==// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// \file This file implements the utility functions used by the GlobalISel /// pipeline. //===----------------------------------------------------------------------===// #include "llvm/CodeGen/GlobalISel/Utils.h" #include "llvm/ADT/APFloat.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/Optional.h" #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/StackProtector.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/IR/Constants.h" #include "llvm/Target/TargetMachine.h" #define DEBUG_TYPE "globalisel-utils" using namespace llvm; using namespace MIPatternMatch; Register llvm::constrainRegToClass(MachineRegisterInfo &MRI, const TargetInstrInfo &TII, const RegisterBankInfo &RBI, Register Reg, const TargetRegisterClass &RegClass) { if (!RBI.constrainGenericRegister(Reg, RegClass, MRI)) return MRI.createVirtualRegister(&RegClass); return Reg; } Register llvm::constrainOperandRegClass( const MachineFunction &MF, const TargetRegisterInfo &TRI, MachineRegisterInfo &MRI, const TargetInstrInfo &TII, const RegisterBankInfo &RBI, MachineInstr &InsertPt, const TargetRegisterClass &RegClass, const MachineOperand &RegMO) { Register Reg = RegMO.getReg(); // Assume physical registers are properly constrained. assert(Register::isVirtualRegister(Reg) && "PhysReg not implemented"); Register ConstrainedReg = constrainRegToClass(MRI, TII, RBI, Reg, RegClass); // If we created a new virtual register because the class is not compatible // then create a copy between the new and the old register. if (ConstrainedReg != Reg) { MachineBasicBlock::iterator InsertIt(&InsertPt); MachineBasicBlock &MBB = *InsertPt.getParent(); if (RegMO.isUse()) { BuildMI(MBB, InsertIt, InsertPt.getDebugLoc(), TII.get(TargetOpcode::COPY), ConstrainedReg) .addReg(Reg); } else { assert(RegMO.isDef() && "Must be a definition"); BuildMI(MBB, std::next(InsertIt), InsertPt.getDebugLoc(), TII.get(TargetOpcode::COPY), Reg) .addReg(ConstrainedReg); } } else { if (GISelChangeObserver *Observer = MF.getObserver()) { if (!RegMO.isDef()) { MachineInstr *RegDef = MRI.getVRegDef(Reg); Observer->changedInstr(*RegDef); } Observer->changingAllUsesOfReg(MRI, Reg); Observer->finishedChangingAllUsesOfReg(); } } return ConstrainedReg; } Register llvm::constrainOperandRegClass( const MachineFunction &MF, const TargetRegisterInfo &TRI, MachineRegisterInfo &MRI, const TargetInstrInfo &TII, const RegisterBankInfo &RBI, MachineInstr &InsertPt, const MCInstrDesc &II, const MachineOperand &RegMO, unsigned OpIdx) { Register Reg = RegMO.getReg(); // Assume physical registers are properly constrained. assert(Register::isVirtualRegister(Reg) && "PhysReg not implemented"); const TargetRegisterClass *RegClass = TII.getRegClass(II, OpIdx, &TRI, MF); // Some of the target independent instructions, like COPY, may not impose any // register class constraints on some of their operands: If it's a use, we can // skip constraining as the instruction defining the register would constrain // it. // We can't constrain unallocatable register classes, because we can't create // virtual registers for these classes, so we need to let targets handled this // case. if (RegClass && !RegClass->isAllocatable()) RegClass = TRI.getConstrainedRegClassForOperand(RegMO, MRI); if (!RegClass) { assert((!isTargetSpecificOpcode(II.getOpcode()) || RegMO.isUse()) && "Register class constraint is required unless either the " "instruction is target independent or the operand is a use"); // FIXME: Just bailing out like this here could be not enough, unless we // expect the users of this function to do the right thing for PHIs and // COPY: // v1 = COPY v0 // v2 = COPY v1 // v1 here may end up not being constrained at all. Please notice that to // reproduce the issue we likely need a destination pattern of a selection // rule producing such extra copies, not just an input GMIR with them as // every existing target using selectImpl handles copies before calling it // and they never reach this function. return Reg; } return constrainOperandRegClass(MF, TRI, MRI, TII, RBI, InsertPt, *RegClass, RegMO); } bool llvm::constrainSelectedInstRegOperands(MachineInstr &I, const TargetInstrInfo &TII, const TargetRegisterInfo &TRI, const RegisterBankInfo &RBI) { assert(!isPreISelGenericOpcode(I.getOpcode()) && "A selected instruction is expected"); MachineBasicBlock &MBB = *I.getParent(); MachineFunction &MF = *MBB.getParent(); MachineRegisterInfo &MRI = MF.getRegInfo(); for (unsigned OpI = 0, OpE = I.getNumExplicitOperands(); OpI != OpE; ++OpI) { MachineOperand &MO = I.getOperand(OpI); // There's nothing to be done on non-register operands. if (!MO.isReg()) continue; LLVM_DEBUG(dbgs() << "Converting operand: " << MO << '\n'); assert(MO.isReg() && "Unsupported non-reg operand"); Register Reg = MO.getReg(); // Physical registers don't need to be constrained. if (Register::isPhysicalRegister(Reg)) continue; // Register operands with a value of 0 (e.g. predicate operands) don't need // to be constrained. if (Reg == 0) continue; // If the operand is a vreg, we should constrain its regclass, and only // insert COPYs if that's impossible. // constrainOperandRegClass does that for us. MO.setReg(constrainOperandRegClass(MF, TRI, MRI, TII, RBI, I, I.getDesc(), MO, OpI)); // Tie uses to defs as indicated in MCInstrDesc if this hasn't already been // done. if (MO.isUse()) { int DefIdx = I.getDesc().getOperandConstraint(OpI, MCOI::TIED_TO); if (DefIdx != -1 && !I.isRegTiedToUseOperand(DefIdx)) I.tieOperands(DefIdx, OpI); } } return true; } bool llvm::canReplaceReg(Register DstReg, Register SrcReg, MachineRegisterInfo &MRI) { // Give up if either DstReg or SrcReg is a physical register. if (DstReg.isPhysical() || SrcReg.isPhysical()) return false; // Give up if the types don't match. if (MRI.getType(DstReg) != MRI.getType(SrcReg)) return false; // Replace if either DstReg has no constraints or the register // constraints match. return !MRI.getRegClassOrRegBank(DstReg) || MRI.getRegClassOrRegBank(DstReg) == MRI.getRegClassOrRegBank(SrcReg); } bool llvm::isTriviallyDead(const MachineInstr &MI, const MachineRegisterInfo &MRI) { // FIXME: This logical is mostly duplicated with // DeadMachineInstructionElim::isDead. Why is LOCAL_ESCAPE not considered in // MachineInstr::isLabel? // Don't delete frame allocation labels. if (MI.getOpcode() == TargetOpcode::LOCAL_ESCAPE) return false; // If we can move an instruction, we can remove it. Otherwise, it has // a side-effect of some sort. bool SawStore = false; if (!MI.isSafeToMove(/*AA=*/nullptr, SawStore) && !MI.isPHI()) return false; // Instructions without side-effects are dead iff they only define dead vregs. for (auto &MO : MI.operands()) { if (!MO.isReg() || !MO.isDef()) continue; Register Reg = MO.getReg(); if (Register::isPhysicalRegister(Reg) || !MRI.use_nodbg_empty(Reg)) return false; } return true; } static void reportGISelDiagnostic(DiagnosticSeverity Severity, MachineFunction &MF, const TargetPassConfig &TPC, MachineOptimizationRemarkEmitter &MORE, MachineOptimizationRemarkMissed &R) { bool IsFatal = Severity == DS_Error && TPC.isGlobalISelAbortEnabled(); // Print the function name explicitly if we don't have a debug location (which // makes the diagnostic less useful) or if we're going to emit a raw error. if (!R.getLocation().isValid() || IsFatal) R << (" (in function: " + MF.getName() + ")").str(); if (IsFatal) report_fatal_error(R.getMsg()); else MORE.emit(R); } void llvm::reportGISelWarning(MachineFunction &MF, const TargetPassConfig &TPC, MachineOptimizationRemarkEmitter &MORE, MachineOptimizationRemarkMissed &R) { reportGISelDiagnostic(DS_Warning, MF, TPC, MORE, R); } void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC, MachineOptimizationRemarkEmitter &MORE, MachineOptimizationRemarkMissed &R) { MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); reportGISelDiagnostic(DS_Error, MF, TPC, MORE, R); } void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC, MachineOptimizationRemarkEmitter &MORE, const char *PassName, StringRef Msg, const MachineInstr &MI) { MachineOptimizationRemarkMissed R(PassName, "GISelFailure: ", MI.getDebugLoc(), MI.getParent()); R << Msg; // Printing MI is expensive; only do it if expensive remarks are enabled. if (TPC.isGlobalISelAbortEnabled() || MORE.allowExtraAnalysis(PassName)) R << ": " << ore::MNV("Inst", MI); reportGISelFailure(MF, TPC, MORE, R); } Optional llvm::getConstantVRegVal(Register VReg, const MachineRegisterInfo &MRI) { Optional ValAndVReg = getConstantVRegValWithLookThrough(VReg, MRI, /*LookThroughInstrs*/ false); assert((!ValAndVReg || ValAndVReg->VReg == VReg) && "Value found while looking through instrs"); if (!ValAndVReg) return None; return ValAndVReg->Value; } Optional llvm::getConstantVRegValWithLookThrough( Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs, bool HandleFConstant) { SmallVector, 4> SeenOpcodes; MachineInstr *MI; auto IsConstantOpcode = [HandleFConstant](unsigned Opcode) { return Opcode == TargetOpcode::G_CONSTANT || (HandleFConstant && Opcode == TargetOpcode::G_FCONSTANT); }; auto GetImmediateValue = [HandleFConstant, &MRI](const MachineInstr &MI) -> Optional { const MachineOperand &CstVal = MI.getOperand(1); if (!CstVal.isImm() && !CstVal.isCImm() && (!HandleFConstant || !CstVal.isFPImm())) return None; if (!CstVal.isFPImm()) { unsigned BitWidth = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); APInt Val = CstVal.isImm() ? APInt(BitWidth, CstVal.getImm()) : CstVal.getCImm()->getValue(); assert(Val.getBitWidth() == BitWidth && "Value bitwidth doesn't match definition type"); return Val; } return CstVal.getFPImm()->getValueAPF().bitcastToAPInt(); }; while ((MI = MRI.getVRegDef(VReg)) && !IsConstantOpcode(MI->getOpcode()) && LookThroughInstrs) { switch (MI->getOpcode()) { case TargetOpcode::G_TRUNC: case TargetOpcode::G_SEXT: case TargetOpcode::G_ZEXT: SeenOpcodes.push_back(std::make_pair( MI->getOpcode(), MRI.getType(MI->getOperand(0).getReg()).getSizeInBits())); VReg = MI->getOperand(1).getReg(); break; case TargetOpcode::COPY: VReg = MI->getOperand(1).getReg(); if (Register::isPhysicalRegister(VReg)) return None; break; case TargetOpcode::G_INTTOPTR: VReg = MI->getOperand(1).getReg(); break; default: return None; } } if (!MI || !IsConstantOpcode(MI->getOpcode())) return None; Optional MaybeVal = GetImmediateValue(*MI); if (!MaybeVal) return None; APInt &Val = *MaybeVal; while (!SeenOpcodes.empty()) { std::pair OpcodeAndSize = SeenOpcodes.pop_back_val(); switch (OpcodeAndSize.first) { case TargetOpcode::G_TRUNC: Val = Val.trunc(OpcodeAndSize.second); break; case TargetOpcode::G_SEXT: Val = Val.sext(OpcodeAndSize.second); break; case TargetOpcode::G_ZEXT: Val = Val.zext(OpcodeAndSize.second); break; } } if (Val.getBitWidth() > 64) return None; return ValueAndVReg{Val.getSExtValue(), VReg}; } const ConstantFP * llvm::getConstantFPVRegVal(Register VReg, const MachineRegisterInfo &MRI) { MachineInstr *MI = MRI.getVRegDef(VReg); if (TargetOpcode::G_FCONSTANT != MI->getOpcode()) return nullptr; return MI->getOperand(1).getFPImm(); } Optional llvm::getDefSrcRegIgnoringCopies(Register Reg, const MachineRegisterInfo &MRI) { Register DefSrcReg = Reg; auto *DefMI = MRI.getVRegDef(Reg); auto DstTy = MRI.getType(DefMI->getOperand(0).getReg()); if (!DstTy.isValid()) return None; while (DefMI->getOpcode() == TargetOpcode::COPY) { Register SrcReg = DefMI->getOperand(1).getReg(); auto SrcTy = MRI.getType(SrcReg); if (!SrcTy.isValid()) break; DefMI = MRI.getVRegDef(SrcReg); DefSrcReg = SrcReg; } return DefinitionAndSourceRegister{DefMI, DefSrcReg}; } MachineInstr *llvm::getDefIgnoringCopies(Register Reg, const MachineRegisterInfo &MRI) { Optional DefSrcReg = getDefSrcRegIgnoringCopies(Reg, MRI); return DefSrcReg ? DefSrcReg->MI : nullptr; } Register llvm::getSrcRegIgnoringCopies(Register Reg, const MachineRegisterInfo &MRI) { Optional DefSrcReg = getDefSrcRegIgnoringCopies(Reg, MRI); return DefSrcReg ? DefSrcReg->Reg : Register(); } MachineInstr *llvm::getOpcodeDef(unsigned Opcode, Register Reg, const MachineRegisterInfo &MRI) { MachineInstr *DefMI = getDefIgnoringCopies(Reg, MRI); return DefMI && DefMI->getOpcode() == Opcode ? DefMI : nullptr; } APFloat llvm::getAPFloatFromSize(double Val, unsigned Size) { if (Size == 32) return APFloat(float(Val)); if (Size == 64) return APFloat(Val); if (Size != 16) llvm_unreachable("Unsupported FPConstant size"); bool Ignored; APFloat APF(Val); APF.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &Ignored); return APF; } Optional llvm::ConstantFoldBinOp(unsigned Opcode, const Register Op1, const Register Op2, const MachineRegisterInfo &MRI) { auto MaybeOp2Cst = getConstantVRegVal(Op2, MRI); if (!MaybeOp2Cst) return None; auto MaybeOp1Cst = getConstantVRegVal(Op1, MRI); if (!MaybeOp1Cst) return None; LLT Ty = MRI.getType(Op1); APInt C1(Ty.getSizeInBits(), *MaybeOp1Cst, true); APInt C2(Ty.getSizeInBits(), *MaybeOp2Cst, true); switch (Opcode) { default: break; case TargetOpcode::G_ADD: return C1 + C2; case TargetOpcode::G_AND: return C1 & C2; case TargetOpcode::G_ASHR: return C1.ashr(C2); case TargetOpcode::G_LSHR: return C1.lshr(C2); case TargetOpcode::G_MUL: return C1 * C2; case TargetOpcode::G_OR: return C1 | C2; case TargetOpcode::G_SHL: return C1 << C2; case TargetOpcode::G_SUB: return C1 - C2; case TargetOpcode::G_XOR: return C1 ^ C2; case TargetOpcode::G_UDIV: if (!C2.getBoolValue()) break; return C1.udiv(C2); case TargetOpcode::G_SDIV: if (!C2.getBoolValue()) break; return C1.sdiv(C2); case TargetOpcode::G_UREM: if (!C2.getBoolValue()) break; return C1.urem(C2); case TargetOpcode::G_SREM: if (!C2.getBoolValue()) break; return C1.srem(C2); } return None; } bool llvm::isKnownNeverNaN(Register Val, const MachineRegisterInfo &MRI, bool SNaN) { const MachineInstr *DefMI = MRI.getVRegDef(Val); if (!DefMI) return false; const TargetMachine& TM = DefMI->getMF()->getTarget(); if (DefMI->getFlag(MachineInstr::FmNoNans) || TM.Options.NoNaNsFPMath) return true; if (SNaN) { // FP operations quiet. For now, just handle the ones inserted during // legalization. switch (DefMI->getOpcode()) { case TargetOpcode::G_FPEXT: case TargetOpcode::G_FPTRUNC: case TargetOpcode::G_FCANONICALIZE: return true; default: return false; } } return false; } Align llvm::inferAlignFromPtrInfo(MachineFunction &MF, const MachinePointerInfo &MPO) { auto PSV = MPO.V.dyn_cast(); if (auto FSPV = dyn_cast_or_null(PSV)) { MachineFrameInfo &MFI = MF.getFrameInfo(); return commonAlignment(MFI.getObjectAlign(FSPV->getFrameIndex()), MPO.Offset); } return Align(1); } Register llvm::getFunctionLiveInPhysReg(MachineFunction &MF, const TargetInstrInfo &TII, MCRegister PhysReg, const TargetRegisterClass &RC, LLT RegTy) { DebugLoc DL; // FIXME: Is no location the right choice? MachineBasicBlock &EntryMBB = MF.front(); MachineRegisterInfo &MRI = MF.getRegInfo(); Register LiveIn = MRI.getLiveInVirtReg(PhysReg); if (LiveIn) { MachineInstr *Def = MRI.getVRegDef(LiveIn); if (Def) { // FIXME: Should the verifier check this is in the entry block? assert(Def->getParent() == &EntryMBB && "live-in copy not in entry block"); return LiveIn; } // It's possible the incoming argument register and copy was added during // lowering, but later deleted due to being/becoming dead. If this happens, // re-insert the copy. } else { // The live in register was not present, so add it. LiveIn = MF.addLiveIn(PhysReg, &RC); if (RegTy.isValid()) MRI.setType(LiveIn, RegTy); } BuildMI(EntryMBB, EntryMBB.begin(), DL, TII.get(TargetOpcode::COPY), LiveIn) .addReg(PhysReg); if (!EntryMBB.isLiveIn(PhysReg)) EntryMBB.addLiveIn(PhysReg); return LiveIn; } Optional llvm::ConstantFoldExtOp(unsigned Opcode, const Register Op1, uint64_t Imm, const MachineRegisterInfo &MRI) { auto MaybeOp1Cst = getConstantVRegVal(Op1, MRI); if (MaybeOp1Cst) { LLT Ty = MRI.getType(Op1); APInt C1(Ty.getSizeInBits(), *MaybeOp1Cst, true); switch (Opcode) { default: break; case TargetOpcode::G_SEXT_INREG: return C1.trunc(Imm).sext(C1.getBitWidth()); } } return None; } void llvm::getSelectionDAGFallbackAnalysisUsage(AnalysisUsage &AU) { AU.addPreserved(); } static unsigned getLCMSize(unsigned OrigSize, unsigned TargetSize) { unsigned Mul = OrigSize * TargetSize; unsigned GCDSize = greatestCommonDivisor(OrigSize, TargetSize); return Mul / GCDSize; } LLT llvm::getLCMType(LLT OrigTy, LLT TargetTy) { const unsigned OrigSize = OrigTy.getSizeInBits(); const unsigned TargetSize = TargetTy.getSizeInBits(); if (OrigSize == TargetSize) return OrigTy; if (OrigTy.isVector()) { const LLT OrigElt = OrigTy.getElementType(); if (TargetTy.isVector()) { const LLT TargetElt = TargetTy.getElementType(); if (OrigElt.getSizeInBits() == TargetElt.getSizeInBits()) { int GCDElts = greatestCommonDivisor(OrigTy.getNumElements(), TargetTy.getNumElements()); // Prefer the original element type. int Mul = OrigTy.getNumElements() * TargetTy.getNumElements(); return LLT::vector(Mul / GCDElts, OrigTy.getElementType()); } } else { if (OrigElt.getSizeInBits() == TargetSize) return OrigTy; } unsigned LCMSize = getLCMSize(OrigSize, TargetSize); return LLT::vector(LCMSize / OrigElt.getSizeInBits(), OrigElt); } if (TargetTy.isVector()) { unsigned LCMSize = getLCMSize(OrigSize, TargetSize); return LLT::vector(LCMSize / OrigSize, OrigTy); } unsigned LCMSize = getLCMSize(OrigSize, TargetSize); // Preserve pointer types. if (LCMSize == OrigSize) return OrigTy; if (LCMSize == TargetSize) return TargetTy; return LLT::scalar(LCMSize); } LLT llvm::getGCDType(LLT OrigTy, LLT TargetTy) { const unsigned OrigSize = OrigTy.getSizeInBits(); const unsigned TargetSize = TargetTy.getSizeInBits(); if (OrigSize == TargetSize) return OrigTy; if (OrigTy.isVector()) { LLT OrigElt = OrigTy.getElementType(); if (TargetTy.isVector()) { LLT TargetElt = TargetTy.getElementType(); if (OrigElt.getSizeInBits() == TargetElt.getSizeInBits()) { int GCD = greatestCommonDivisor(OrigTy.getNumElements(), TargetTy.getNumElements()); return LLT::scalarOrVector(GCD, OrigElt); } } else { // If the source is a vector of pointers, return a pointer element. if (OrigElt.getSizeInBits() == TargetSize) return OrigElt; } unsigned GCD = greatestCommonDivisor(OrigSize, TargetSize); if (GCD == OrigElt.getSizeInBits()) return OrigElt; // If we can't produce the original element type, we have to use a smaller // scalar. if (GCD < OrigElt.getSizeInBits()) return LLT::scalar(GCD); return LLT::vector(GCD / OrigElt.getSizeInBits(), OrigElt); } if (TargetTy.isVector()) { // Try to preserve the original element type. LLT TargetElt = TargetTy.getElementType(); if (TargetElt.getSizeInBits() == OrigSize) return OrigTy; } unsigned GCD = greatestCommonDivisor(OrigSize, TargetSize); return LLT::scalar(GCD); } Optional llvm::getSplatIndex(MachineInstr &MI) { assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && "Only G_SHUFFLE_VECTOR can have a splat index!"); ArrayRef Mask = MI.getOperand(3).getShuffleMask(); auto FirstDefinedIdx = find_if(Mask, [](int Elt) { return Elt >= 0; }); // If all elements are undefined, this shuffle can be considered a splat. // Return 0 for better potential for callers to simplify. if (FirstDefinedIdx == Mask.end()) return 0; // Make sure all remaining elements are either undef or the same // as the first non-undef value. int SplatValue = *FirstDefinedIdx; if (any_of(make_range(std::next(FirstDefinedIdx), Mask.end()), [&SplatValue](int Elt) { return Elt >= 0 && Elt != SplatValue; })) return None; return SplatValue; } static bool isBuildVectorOp(unsigned Opcode) { return Opcode == TargetOpcode::G_BUILD_VECTOR || Opcode == TargetOpcode::G_BUILD_VECTOR_TRUNC; } // TODO: Handle mixed undef elements. static bool isBuildVectorConstantSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI, int64_t SplatValue) { if (!isBuildVectorOp(MI.getOpcode())) return false; const unsigned NumOps = MI.getNumOperands(); for (unsigned I = 1; I != NumOps; ++I) { Register Element = MI.getOperand(I).getReg(); if (!mi_match(Element, MRI, m_SpecificICst(SplatValue))) return false; } return true; } Optional llvm::getBuildVectorConstantSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI) { if (!isBuildVectorOp(MI.getOpcode())) return None; const unsigned NumOps = MI.getNumOperands(); Optional Scalar; for (unsigned I = 1; I != NumOps; ++I) { Register Element = MI.getOperand(I).getReg(); int64_t ElementValue; if (!mi_match(Element, MRI, m_ICst(ElementValue))) return None; if (!Scalar) Scalar = ElementValue; else if (*Scalar != ElementValue) return None; } return Scalar; } bool llvm::isBuildVectorAllZeros(const MachineInstr &MI, const MachineRegisterInfo &MRI) { return isBuildVectorConstantSplat(MI, MRI, 0); } bool llvm::isBuildVectorAllOnes(const MachineInstr &MI, const MachineRegisterInfo &MRI) { return isBuildVectorConstantSplat(MI, MRI, -1); } bool llvm::isConstTrueVal(const TargetLowering &TLI, int64_t Val, bool IsVector, bool IsFP) { switch (TLI.getBooleanContents(IsVector, IsFP)) { case TargetLowering::UndefinedBooleanContent: return Val & 0x1; case TargetLowering::ZeroOrOneBooleanContent: return Val == 1; case TargetLowering::ZeroOrNegativeOneBooleanContent: return Val == -1; } llvm_unreachable("Invalid boolean contents"); } int64_t llvm::getICmpTrueVal(const TargetLowering &TLI, bool IsVector, bool IsFP) { switch (TLI.getBooleanContents(IsVector, IsFP)) { case TargetLowering::UndefinedBooleanContent: case TargetLowering::ZeroOrOneBooleanContent: return 1; case TargetLowering::ZeroOrNegativeOneBooleanContent: return -1; } llvm_unreachable("Invalid boolean contents"); }