//===-- Constants.cpp - Implement Constant nodes --------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the Constant* classes. // //===----------------------------------------------------------------------===// #include "llvm/IR/Constants.h" #include "ConstantFold.h" #include "LLVMContextImpl.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringMap.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/GetElementPtrTypeIterator.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Module.h" #include "llvm/IR/Operator.h" #include "llvm/IR/PatternMatch.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include using namespace llvm; using namespace PatternMatch; //===----------------------------------------------------------------------===// // Constant Class //===----------------------------------------------------------------------===// bool Constant::isNegativeZeroValue() const { // Floating point values have an explicit -0.0 value. if (const ConstantFP *CFP = dyn_cast(this)) return CFP->isZero() && CFP->isNegative(); // Equivalent for a vector of -0.0's. if (const ConstantDataVector *CV = dyn_cast(this)) if (CV->getElementType()->isFloatingPointTy() && CV->isSplat()) if (CV->getElementAsAPFloat(0).isNegZero()) return true; if (const ConstantVector *CV = dyn_cast(this)) if (ConstantFP *SplatCFP = dyn_cast_or_null(CV->getSplatValue())) if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative()) return true; // We've already handled true FP case; any other FP vectors can't represent -0.0. if (getType()->isFPOrFPVectorTy()) return false; // Otherwise, just use +0.0. return isNullValue(); } // Return true iff this constant is positive zero (floating point), negative // zero (floating point), or a null value. bool Constant::isZeroValue() const { // Floating point values have an explicit -0.0 value. if (const ConstantFP *CFP = dyn_cast(this)) return CFP->isZero(); // Equivalent for a vector of -0.0's. if (const ConstantDataVector *CV = dyn_cast(this)) if (CV->getElementType()->isFloatingPointTy() && CV->isSplat()) if (CV->getElementAsAPFloat(0).isZero()) return true; if (const ConstantVector *CV = dyn_cast(this)) if (ConstantFP *SplatCFP = dyn_cast_or_null(CV->getSplatValue())) if (SplatCFP && SplatCFP->isZero()) return true; // Otherwise, just use +0.0. return isNullValue(); } bool Constant::isNullValue() const { // 0 is null. if (const ConstantInt *CI = dyn_cast(this)) return CI->isZero(); // +0.0 is null. if (const ConstantFP *CFP = dyn_cast(this)) return CFP->isZero() && !CFP->isNegative(); // constant zero is zero for aggregates, cpnull is null for pointers, none for // tokens. return isa(this) || isa(this) || isa(this); } bool Constant::isAllOnesValue() const { // Check for -1 integers if (const ConstantInt *CI = dyn_cast(this)) return CI->isMinusOne(); // Check for FP which are bitcasted from -1 integers if (const ConstantFP *CFP = dyn_cast(this)) return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue(); // Check for constant vectors which are splats of -1 values. if (const ConstantVector *CV = dyn_cast(this)) if (Constant *Splat = CV->getSplatValue()) return Splat->isAllOnesValue(); // Check for constant vectors which are splats of -1 values. if (const ConstantDataVector *CV = dyn_cast(this)) { if (CV->isSplat()) { if (CV->getElementType()->isFloatingPointTy()) return CV->getElementAsAPFloat(0).bitcastToAPInt().isAllOnesValue(); return CV->getElementAsAPInt(0).isAllOnesValue(); } } return false; } bool Constant::isOneValue() const { // Check for 1 integers if (const ConstantInt *CI = dyn_cast(this)) return CI->isOne(); // Check for FP which are bitcasted from 1 integers if (const ConstantFP *CFP = dyn_cast(this)) return CFP->getValueAPF().bitcastToAPInt().isOneValue(); // Check for constant vectors which are splats of 1 values. if (const ConstantVector *CV = dyn_cast(this)) if (Constant *Splat = CV->getSplatValue()) return Splat->isOneValue(); // Check for constant vectors which are splats of 1 values. if (const ConstantDataVector *CV = dyn_cast(this)) { if (CV->isSplat()) { if (CV->getElementType()->isFloatingPointTy()) return CV->getElementAsAPFloat(0).bitcastToAPInt().isOneValue(); return CV->getElementAsAPInt(0).isOneValue(); } } return false; } bool Constant::isNotOneValue() const { // Check for 1 integers if (const ConstantInt *CI = dyn_cast(this)) return !CI->isOneValue(); // Check for FP which are bitcasted from 1 integers if (const ConstantFP *CFP = dyn_cast(this)) return !CFP->getValueAPF().bitcastToAPInt().isOneValue(); // Check that vectors don't contain 1 if (auto *VTy = dyn_cast(this->getType())) { unsigned NumElts = cast(VTy)->getNumElements(); for (unsigned i = 0; i != NumElts; ++i) { Constant *Elt = this->getAggregateElement(i); if (!Elt || !Elt->isNotOneValue()) return false; } return true; } // It *may* contain 1, we can't tell. return false; } bool Constant::isMinSignedValue() const { // Check for INT_MIN integers if (const ConstantInt *CI = dyn_cast(this)) return CI->isMinValue(/*isSigned=*/true); // Check for FP which are bitcasted from INT_MIN integers if (const ConstantFP *CFP = dyn_cast(this)) return CFP->getValueAPF().bitcastToAPInt().isMinSignedValue(); // Check for constant vectors which are splats of INT_MIN values. if (const ConstantVector *CV = dyn_cast(this)) if (Constant *Splat = CV->getSplatValue()) return Splat->isMinSignedValue(); // Check for constant vectors which are splats of INT_MIN values. if (const ConstantDataVector *CV = dyn_cast(this)) { if (CV->isSplat()) { if (CV->getElementType()->isFloatingPointTy()) return CV->getElementAsAPFloat(0).bitcastToAPInt().isMinSignedValue(); return CV->getElementAsAPInt(0).isMinSignedValue(); } } return false; } bool Constant::isNotMinSignedValue() const { // Check for INT_MIN integers if (const ConstantInt *CI = dyn_cast(this)) return !CI->isMinValue(/*isSigned=*/true); // Check for FP which are bitcasted from INT_MIN integers if (const ConstantFP *CFP = dyn_cast(this)) return !CFP->getValueAPF().bitcastToAPInt().isMinSignedValue(); // Check that vectors don't contain INT_MIN if (auto *VTy = dyn_cast(this->getType())) { unsigned NumElts = cast(VTy)->getNumElements(); for (unsigned i = 0; i != NumElts; ++i) { Constant *Elt = this->getAggregateElement(i); if (!Elt || !Elt->isNotMinSignedValue()) return false; } return true; } // It *may* contain INT_MIN, we can't tell. return false; } bool Constant::isFiniteNonZeroFP() const { if (auto *CFP = dyn_cast(this)) return CFP->getValueAPF().isFiniteNonZero(); auto *VTy = dyn_cast(getType()); if (!VTy) return false; for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { auto *CFP = dyn_cast_or_null(this->getAggregateElement(i)); if (!CFP || !CFP->getValueAPF().isFiniteNonZero()) return false; } return true; } bool Constant::isNormalFP() const { if (auto *CFP = dyn_cast(this)) return CFP->getValueAPF().isNormal(); auto *VTy = dyn_cast(getType()); if (!VTy) return false; for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { auto *CFP = dyn_cast_or_null(this->getAggregateElement(i)); if (!CFP || !CFP->getValueAPF().isNormal()) return false; } return true; } bool Constant::hasExactInverseFP() const { if (auto *CFP = dyn_cast(this)) return CFP->getValueAPF().getExactInverse(nullptr); auto *VTy = dyn_cast(getType()); if (!VTy) return false; for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { auto *CFP = dyn_cast_or_null(this->getAggregateElement(i)); if (!CFP || !CFP->getValueAPF().getExactInverse(nullptr)) return false; } return true; } bool Constant::isNaN() const { if (auto *CFP = dyn_cast(this)) return CFP->isNaN(); auto *VTy = dyn_cast(getType()); if (!VTy) return false; for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { auto *CFP = dyn_cast_or_null(this->getAggregateElement(i)); if (!CFP || !CFP->isNaN()) return false; } return true; } bool Constant::isElementWiseEqual(Value *Y) const { // Are they fully identical? if (this == Y) return true; // The input value must be a vector constant with the same type. auto *VTy = dyn_cast(getType()); if (!isa(Y) || !VTy || VTy != Y->getType()) return false; // TODO: Compare pointer constants? if (!(VTy->getElementType()->isIntegerTy() || VTy->getElementType()->isFloatingPointTy())) return false; // They may still be identical element-wise (if they have `undef`s). // Bitcast to integer to allow exact bitwise comparison for all types. Type *IntTy = VectorType::getInteger(VTy); Constant *C0 = ConstantExpr::getBitCast(const_cast(this), IntTy); Constant *C1 = ConstantExpr::getBitCast(cast(Y), IntTy); Constant *CmpEq = ConstantExpr::getICmp(ICmpInst::ICMP_EQ, C0, C1); return isa(CmpEq) || match(CmpEq, m_One()); } bool Constant::containsUndefElement() const { if (auto *VTy = dyn_cast(getType())) { if (isa(this)) return true; if (isa(this)) return false; if (isa(getType())) return false; for (unsigned i = 0, e = cast(VTy)->getNumElements(); i != e; ++i) if (isa(getAggregateElement(i))) return true; } return false; } bool Constant::containsConstantExpression() const { if (auto *VTy = dyn_cast(getType())) { for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) if (isa(getAggregateElement(i))) return true; } return false; } /// Constructor to create a '0' constant of arbitrary type. Constant *Constant::getNullValue(Type *Ty) { switch (Ty->getTypeID()) { case Type::IntegerTyID: return ConstantInt::get(Ty, 0); case Type::HalfTyID: return ConstantFP::get(Ty->getContext(), APFloat::getZero(APFloat::IEEEhalf())); case Type::BFloatTyID: return ConstantFP::get(Ty->getContext(), APFloat::getZero(APFloat::BFloat())); case Type::FloatTyID: return ConstantFP::get(Ty->getContext(), APFloat::getZero(APFloat::IEEEsingle())); case Type::DoubleTyID: return ConstantFP::get(Ty->getContext(), APFloat::getZero(APFloat::IEEEdouble())); case Type::X86_FP80TyID: return ConstantFP::get(Ty->getContext(), APFloat::getZero(APFloat::x87DoubleExtended())); case Type::FP128TyID: return ConstantFP::get(Ty->getContext(), APFloat::getZero(APFloat::IEEEquad())); case Type::PPC_FP128TyID: return ConstantFP::get(Ty->getContext(), APFloat(APFloat::PPCDoubleDouble(), APInt::getNullValue(128))); case Type::PointerTyID: return ConstantPointerNull::get(cast(Ty)); case Type::StructTyID: case Type::ArrayTyID: case Type::FixedVectorTyID: case Type::ScalableVectorTyID: return ConstantAggregateZero::get(Ty); case Type::TokenTyID: return ConstantTokenNone::get(Ty->getContext()); default: // Function, Label, or Opaque type? llvm_unreachable("Cannot create a null constant of that type!"); } } Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) { Type *ScalarTy = Ty->getScalarType(); // Create the base integer constant. Constant *C = ConstantInt::get(Ty->getContext(), V); // Convert an integer to a pointer, if necessary. if (PointerType *PTy = dyn_cast(ScalarTy)) C = ConstantExpr::getIntToPtr(C, PTy); // Broadcast a scalar to a vector, if necessary. if (VectorType *VTy = dyn_cast(Ty)) C = ConstantVector::getSplat(VTy->getElementCount(), C); return C; } Constant *Constant::getAllOnesValue(Type *Ty) { if (IntegerType *ITy = dyn_cast(Ty)) return ConstantInt::get(Ty->getContext(), APInt::getAllOnesValue(ITy->getBitWidth())); if (Ty->isFloatingPointTy()) { APFloat FL = APFloat::getAllOnesValue(Ty->getFltSemantics(), Ty->getPrimitiveSizeInBits()); return ConstantFP::get(Ty->getContext(), FL); } VectorType *VTy = cast(Ty); return ConstantVector::getSplat(VTy->getElementCount(), getAllOnesValue(VTy->getElementType())); } Constant *Constant::getAggregateElement(unsigned Elt) const { if (const auto *CC = dyn_cast(this)) return Elt < CC->getNumOperands() ? CC->getOperand(Elt) : nullptr; // FIXME: getNumElements() will fail for non-fixed vector types. if (isa(getType())) return nullptr; if (const auto *CAZ = dyn_cast(this)) return Elt < CAZ->getNumElements() ? CAZ->getElementValue(Elt) : nullptr; if (const auto *PV = dyn_cast(this)) return Elt < PV->getNumElements() ? PV->getElementValue(Elt) : nullptr; if (const auto *UV = dyn_cast(this)) return Elt < UV->getNumElements() ? UV->getElementValue(Elt) : nullptr; if (const auto *CDS = dyn_cast(this)) return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt) : nullptr; return nullptr; } Constant *Constant::getAggregateElement(Constant *Elt) const { assert(isa(Elt->getType()) && "Index must be an integer"); if (ConstantInt *CI = dyn_cast(Elt)) { // Check if the constant fits into an uint64_t. if (CI->getValue().getActiveBits() > 64) return nullptr; return getAggregateElement(CI->getZExtValue()); } return nullptr; } void Constant::destroyConstant() { /// First call destroyConstantImpl on the subclass. This gives the subclass /// a chance to remove the constant from any maps/pools it's contained in. switch (getValueID()) { default: llvm_unreachable("Not a constant!"); #define HANDLE_CONSTANT(Name) \ case Value::Name##Val: \ cast(this)->destroyConstantImpl(); \ break; #include "llvm/IR/Value.def" } // When a Constant is destroyed, there may be lingering // references to the constant by other constants in the constant pool. These // constants are implicitly dependent on the module that is being deleted, // but they don't know that. Because we only find out when the CPV is // deleted, we must now notify all of our users (that should only be // Constants) that they are, in fact, invalid now and should be deleted. // while (!use_empty()) { Value *V = user_back(); #ifndef NDEBUG // Only in -g mode... if (!isa(V)) { dbgs() << "While deleting: " << *this << "\n\nUse still stuck around after Def is destroyed: " << *V << "\n\n"; } #endif assert(isa(V) && "References remain to Constant being destroyed"); cast(V)->destroyConstant(); // The constant should remove itself from our use list... assert((use_empty() || user_back() != V) && "Constant not removed!"); } // Value has no outstanding references it is safe to delete it now... deleteConstant(this); } void llvm::deleteConstant(Constant *C) { switch (C->getValueID()) { case Constant::ConstantIntVal: delete static_cast(C); break; case Constant::ConstantFPVal: delete static_cast(C); break; case Constant::ConstantAggregateZeroVal: delete static_cast(C); break; case Constant::ConstantArrayVal: delete static_cast(C); break; case Constant::ConstantStructVal: delete static_cast(C); break; case Constant::ConstantVectorVal: delete static_cast(C); break; case Constant::ConstantPointerNullVal: delete static_cast(C); break; case Constant::ConstantDataArrayVal: delete static_cast(C); break; case Constant::ConstantDataVectorVal: delete static_cast(C); break; case Constant::ConstantTokenNoneVal: delete static_cast(C); break; case Constant::BlockAddressVal: delete static_cast(C); break; case Constant::DSOLocalEquivalentVal: delete static_cast(C); break; case Constant::UndefValueVal: delete static_cast(C); break; case Constant::PoisonValueVal: delete static_cast(C); break; case Constant::ConstantExprVal: if (isa(C)) delete static_cast(C); else if (isa(C)) delete static_cast(C); else if (isa(C)) delete static_cast(C); else if (isa(C)) delete static_cast(C); else if (isa(C)) delete static_cast(C); else if (isa(C)) delete static_cast(C); else if (isa(C)) delete static_cast(C); else if (isa(C)) delete static_cast(C); else if (isa(C)) delete static_cast(C); else if (isa(C)) delete static_cast(C); else llvm_unreachable("Unexpected constant expr"); break; default: llvm_unreachable("Unexpected constant"); } } static bool canTrapImpl(const Constant *C, SmallPtrSetImpl &NonTrappingOps) { assert(C->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!"); // The only thing that could possibly trap are constant exprs. const ConstantExpr *CE = dyn_cast(C); if (!CE) return false; // ConstantExpr traps if any operands can trap. for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) { if (ConstantExpr *Op = dyn_cast(CE->getOperand(i))) { if (NonTrappingOps.insert(Op).second && canTrapImpl(Op, NonTrappingOps)) return true; } } // Otherwise, only specific operations can trap. switch (CE->getOpcode()) { default: return false; case Instruction::UDiv: case Instruction::SDiv: case Instruction::URem: case Instruction::SRem: // Div and rem can trap if the RHS is not known to be non-zero. if (!isa(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue()) return true; return false; } } bool Constant::canTrap() const { SmallPtrSet NonTrappingOps; return canTrapImpl(this, NonTrappingOps); } /// Check if C contains a GlobalValue for which Predicate is true. static bool ConstHasGlobalValuePredicate(const Constant *C, bool (*Predicate)(const GlobalValue *)) { SmallPtrSet Visited; SmallVector WorkList; WorkList.push_back(C); Visited.insert(C); while (!WorkList.empty()) { const Constant *WorkItem = WorkList.pop_back_val(); if (const auto *GV = dyn_cast(WorkItem)) if (Predicate(GV)) return true; for (const Value *Op : WorkItem->operands()) { const Constant *ConstOp = dyn_cast(Op); if (!ConstOp) continue; if (Visited.insert(ConstOp).second) WorkList.push_back(ConstOp); } } return false; } bool Constant::isThreadDependent() const { auto DLLImportPredicate = [](const GlobalValue *GV) { return GV->isThreadLocal(); }; return ConstHasGlobalValuePredicate(this, DLLImportPredicate); } bool Constant::isDLLImportDependent() const { auto DLLImportPredicate = [](const GlobalValue *GV) { return GV->hasDLLImportStorageClass(); }; return ConstHasGlobalValuePredicate(this, DLLImportPredicate); } bool Constant::isConstantUsed() const { for (const User *U : users()) { const Constant *UC = dyn_cast(U); if (!UC || isa(UC)) return true; if (UC->isConstantUsed()) return true; } return false; } bool Constant::needsRelocation() const { if (isa(this)) return true; // Global reference. if (const BlockAddress *BA = dyn_cast(this)) return BA->getFunction()->needsRelocation(); if (const ConstantExpr *CE = dyn_cast(this)) { if (CE->getOpcode() == Instruction::Sub) { ConstantExpr *LHS = dyn_cast(CE->getOperand(0)); ConstantExpr *RHS = dyn_cast(CE->getOperand(1)); if (LHS && RHS && LHS->getOpcode() == Instruction::PtrToInt && RHS->getOpcode() == Instruction::PtrToInt) { Constant *LHSOp0 = LHS->getOperand(0); Constant *RHSOp0 = RHS->getOperand(0); // While raw uses of blockaddress need to be relocated, differences // between two of them don't when they are for labels in the same // function. This is a common idiom when creating a table for the // indirect goto extension, so we handle it efficiently here. if (isa(LHSOp0) && isa(RHSOp0) && cast(LHSOp0)->getFunction() == cast(RHSOp0)->getFunction()) return false; // Relative pointers do not need to be dynamically relocated. if (auto *RHSGV = dyn_cast(RHSOp0->stripInBoundsConstantOffsets())) { auto *LHS = LHSOp0->stripInBoundsConstantOffsets(); if (auto *LHSGV = dyn_cast(LHS)) { if (LHSGV->isDSOLocal() && RHSGV->isDSOLocal()) return false; } else if (isa(LHS)) { if (RHSGV->isDSOLocal()) return false; } } } } } bool Result = false; for (unsigned i = 0, e = getNumOperands(); i != e; ++i) Result |= cast(getOperand(i))->needsRelocation(); return Result; } /// If the specified constantexpr is dead, remove it. This involves recursively /// eliminating any dead users of the constantexpr. static bool removeDeadUsersOfConstant(const Constant *C) { if (isa(C)) return false; // Cannot remove this while (!C->use_empty()) { const Constant *User = dyn_cast(C->user_back()); if (!User) return false; // Non-constant usage; if (!removeDeadUsersOfConstant(User)) return false; // Constant wasn't dead } const_cast(C)->destroyConstant(); return true; } void Constant::removeDeadConstantUsers() const { Value::const_user_iterator I = user_begin(), E = user_end(); Value::const_user_iterator LastNonDeadUser = E; while (I != E) { const Constant *User = dyn_cast(*I); if (!User) { LastNonDeadUser = I; ++I; continue; } if (!removeDeadUsersOfConstant(User)) { // If the constant wasn't dead, remember that this was the last live use // and move on to the next constant. LastNonDeadUser = I; ++I; continue; } // If the constant was dead, then the iterator is invalidated. if (LastNonDeadUser == E) I = user_begin(); else I = std::next(LastNonDeadUser); } } Constant *Constant::replaceUndefsWith(Constant *C, Constant *Replacement) { assert(C && Replacement && "Expected non-nullptr constant arguments"); Type *Ty = C->getType(); if (match(C, m_Undef())) { assert(Ty == Replacement->getType() && "Expected matching types"); return Replacement; } // Don't know how to deal with this constant. auto *VTy = dyn_cast(Ty); if (!VTy) return C; unsigned NumElts = VTy->getNumElements(); SmallVector NewC(NumElts); for (unsigned i = 0; i != NumElts; ++i) { Constant *EltC = C->getAggregateElement(i); assert((!EltC || EltC->getType() == Replacement->getType()) && "Expected matching types"); NewC[i] = EltC && match(EltC, m_Undef()) ? Replacement : EltC; } return ConstantVector::get(NewC); } Constant *Constant::mergeUndefsWith(Constant *C, Constant *Other) { assert(C && Other && "Expected non-nullptr constant arguments"); if (match(C, m_Undef())) return C; Type *Ty = C->getType(); if (match(Other, m_Undef())) return UndefValue::get(Ty); auto *VTy = dyn_cast(Ty); if (!VTy) return C; Type *EltTy = VTy->getElementType(); unsigned NumElts = VTy->getNumElements(); assert(isa(Other->getType()) && cast(Other->getType())->getNumElements() == NumElts && "Type mismatch"); bool FoundExtraUndef = false; SmallVector NewC(NumElts); for (unsigned I = 0; I != NumElts; ++I) { NewC[I] = C->getAggregateElement(I); Constant *OtherEltC = Other->getAggregateElement(I); assert(NewC[I] && OtherEltC && "Unknown vector element"); if (!match(NewC[I], m_Undef()) && match(OtherEltC, m_Undef())) { NewC[I] = UndefValue::get(EltTy); FoundExtraUndef = true; } } if (FoundExtraUndef) return ConstantVector::get(NewC); return C; } //===----------------------------------------------------------------------===// // ConstantInt //===----------------------------------------------------------------------===// ConstantInt::ConstantInt(IntegerType *Ty, const APInt &V) : ConstantData(Ty, ConstantIntVal), Val(V) { assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type"); } ConstantInt *ConstantInt::getTrue(LLVMContext &Context) { LLVMContextImpl *pImpl = Context.pImpl; if (!pImpl->TheTrueVal) pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1); return pImpl->TheTrueVal; } ConstantInt *ConstantInt::getFalse(LLVMContext &Context) { LLVMContextImpl *pImpl = Context.pImpl; if (!pImpl->TheFalseVal) pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0); return pImpl->TheFalseVal; } Constant *ConstantInt::getTrue(Type *Ty) { assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1."); ConstantInt *TrueC = ConstantInt::getTrue(Ty->getContext()); if (auto *VTy = dyn_cast(Ty)) return ConstantVector::getSplat(VTy->getElementCount(), TrueC); return TrueC; } Constant *ConstantInt::getFalse(Type *Ty) { assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1."); ConstantInt *FalseC = ConstantInt::getFalse(Ty->getContext()); if (auto *VTy = dyn_cast(Ty)) return ConstantVector::getSplat(VTy->getElementCount(), FalseC); return FalseC; } // Get a ConstantInt from an APInt. ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) { // get an existing value or the insertion position LLVMContextImpl *pImpl = Context.pImpl; std::unique_ptr &Slot = pImpl->IntConstants[V]; if (!Slot) { // Get the corresponding integer type for the bit width of the value. IntegerType *ITy = IntegerType::get(Context, V.getBitWidth()); Slot.reset(new ConstantInt(ITy, V)); } assert(Slot->getType() == IntegerType::get(Context, V.getBitWidth())); return Slot.get(); } Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) { Constant *C = get(cast(Ty->getScalarType()), V, isSigned); // For vectors, broadcast the value. if (VectorType *VTy = dyn_cast(Ty)) return ConstantVector::getSplat(VTy->getElementCount(), C); return C; } ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V, bool isSigned) { return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned)); } ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) { return get(Ty, V, true); } Constant *ConstantInt::getSigned(Type *Ty, int64_t V) { return get(Ty, V, true); } Constant *ConstantInt::get(Type *Ty, const APInt& V) { ConstantInt *C = get(Ty->getContext(), V); assert(C->getType() == Ty->getScalarType() && "ConstantInt type doesn't match the type implied by its value!"); // For vectors, broadcast the value. if (VectorType *VTy = dyn_cast(Ty)) return ConstantVector::getSplat(VTy->getElementCount(), C); return C; } ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str, uint8_t radix) { return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix)); } /// Remove the constant from the constant table. void ConstantInt::destroyConstantImpl() { llvm_unreachable("You can't ConstantInt->destroyConstantImpl()!"); } //===----------------------------------------------------------------------===// // ConstantFP //===----------------------------------------------------------------------===// Constant *ConstantFP::get(Type *Ty, double V) { LLVMContext &Context = Ty->getContext(); APFloat FV(V); bool ignored; FV.convert(Ty->getScalarType()->getFltSemantics(), APFloat::rmNearestTiesToEven, &ignored); Constant *C = get(Context, FV); // For vectors, broadcast the value. if (VectorType *VTy = dyn_cast(Ty)) return ConstantVector::getSplat(VTy->getElementCount(), C); return C; } Constant *ConstantFP::get(Type *Ty, const APFloat &V) { ConstantFP *C = get(Ty->getContext(), V); assert(C->getType() == Ty->getScalarType() && "ConstantFP type doesn't match the type implied by its value!"); // For vectors, broadcast the value. if (auto *VTy = dyn_cast(Ty)) return ConstantVector::getSplat(VTy->getElementCount(), C); return C; } Constant *ConstantFP::get(Type *Ty, StringRef Str) { LLVMContext &Context = Ty->getContext(); APFloat FV(Ty->getScalarType()->getFltSemantics(), Str); Constant *C = get(Context, FV); // For vectors, broadcast the value. if (VectorType *VTy = dyn_cast(Ty)) return ConstantVector::getSplat(VTy->getElementCount(), C); return C; } Constant *ConstantFP::getNaN(Type *Ty, bool Negative, uint64_t Payload) { const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics(); APFloat NaN = APFloat::getNaN(Semantics, Negative, Payload); Constant *C = get(Ty->getContext(), NaN); if (VectorType *VTy = dyn_cast(Ty)) return ConstantVector::getSplat(VTy->getElementCount(), C); return C; } Constant *ConstantFP::getQNaN(Type *Ty, bool Negative, APInt *Payload) { const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics(); APFloat NaN = APFloat::getQNaN(Semantics, Negative, Payload); Constant *C = get(Ty->getContext(), NaN); if (VectorType *VTy = dyn_cast(Ty)) return ConstantVector::getSplat(VTy->getElementCount(), C); return C; } Constant *ConstantFP::getSNaN(Type *Ty, bool Negative, APInt *Payload) { const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics(); APFloat NaN = APFloat::getSNaN(Semantics, Negative, Payload); Constant *C = get(Ty->getContext(), NaN); if (VectorType *VTy = dyn_cast(Ty)) return ConstantVector::getSplat(VTy->getElementCount(), C); return C; } Constant *ConstantFP::getNegativeZero(Type *Ty) { const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics(); APFloat NegZero = APFloat::getZero(Semantics, /*Negative=*/true); Constant *C = get(Ty->getContext(), NegZero); if (VectorType *VTy = dyn_cast(Ty)) return ConstantVector::getSplat(VTy->getElementCount(), C); return C; } Constant *ConstantFP::getZeroValueForNegation(Type *Ty) { if (Ty->isFPOrFPVectorTy()) return getNegativeZero(Ty); return Constant::getNullValue(Ty); } // ConstantFP accessors. ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) { LLVMContextImpl* pImpl = Context.pImpl; std::unique_ptr &Slot = pImpl->FPConstants[V]; if (!Slot) { Type *Ty = Type::getFloatingPointTy(Context, V.getSemantics()); Slot.reset(new ConstantFP(Ty, V)); } return Slot.get(); } Constant *ConstantFP::getInfinity(Type *Ty, bool Negative) { const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics(); Constant *C = get(Ty->getContext(), APFloat::getInf(Semantics, Negative)); if (VectorType *VTy = dyn_cast(Ty)) return ConstantVector::getSplat(VTy->getElementCount(), C); return C; } ConstantFP::ConstantFP(Type *Ty, const APFloat &V) : ConstantData(Ty, ConstantFPVal), Val(V) { assert(&V.getSemantics() == &Ty->getFltSemantics() && "FP type Mismatch"); } bool ConstantFP::isExactlyValue(const APFloat &V) const { return Val.bitwiseIsEqual(V); } /// Remove the constant from the constant table. void ConstantFP::destroyConstantImpl() { llvm_unreachable("You can't ConstantFP->destroyConstantImpl()!"); } //===----------------------------------------------------------------------===// // ConstantAggregateZero Implementation //===----------------------------------------------------------------------===// Constant *ConstantAggregateZero::getSequentialElement() const { if (auto *AT = dyn_cast(getType())) return Constant::getNullValue(AT->getElementType()); return Constant::getNullValue(cast(getType())->getElementType()); } Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const { return Constant::getNullValue(getType()->getStructElementType(Elt)); } Constant *ConstantAggregateZero::getElementValue(Constant *C) const { if (isa(getType()) || isa(getType())) return getSequentialElement(); return getStructElement(cast(C)->getZExtValue()); } Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const { if (isa(getType()) || isa(getType())) return getSequentialElement(); return getStructElement(Idx); } unsigned ConstantAggregateZero::getNumElements() const { Type *Ty = getType(); if (auto *AT = dyn_cast(Ty)) return AT->getNumElements(); if (auto *VT = dyn_cast(Ty)) return cast(VT)->getNumElements(); return Ty->getStructNumElements(); } //===----------------------------------------------------------------------===// // UndefValue Implementation //===----------------------------------------------------------------------===// UndefValue *UndefValue::getSequentialElement() const { if (ArrayType *ATy = dyn_cast(getType())) return UndefValue::get(ATy->getElementType()); return UndefValue::get(cast(getType())->getElementType()); } UndefValue *UndefValue::getStructElement(unsigned Elt) const { return UndefValue::get(getType()->getStructElementType(Elt)); } UndefValue *UndefValue::getElementValue(Constant *C) const { if (isa(getType()) || isa(getType())) return getSequentialElement(); return getStructElement(cast(C)->getZExtValue()); } UndefValue *UndefValue::getElementValue(unsigned Idx) const { if (isa(getType()) || isa(getType())) return getSequentialElement(); return getStructElement(Idx); } unsigned UndefValue::getNumElements() const { Type *Ty = getType(); if (auto *AT = dyn_cast(Ty)) return AT->getNumElements(); if (auto *VT = dyn_cast(Ty)) return cast(VT)->getNumElements(); return Ty->getStructNumElements(); } //===----------------------------------------------------------------------===// // PoisonValue Implementation //===----------------------------------------------------------------------===// PoisonValue *PoisonValue::getSequentialElement() const { if (ArrayType *ATy = dyn_cast(getType())) return PoisonValue::get(ATy->getElementType()); return PoisonValue::get(cast(getType())->getElementType()); } PoisonValue *PoisonValue::getStructElement(unsigned Elt) const { return PoisonValue::get(getType()->getStructElementType(Elt)); } PoisonValue *PoisonValue::getElementValue(Constant *C) const { if (isa(getType()) || isa(getType())) return getSequentialElement(); return getStructElement(cast(C)->getZExtValue()); } PoisonValue *PoisonValue::getElementValue(unsigned Idx) const { if (isa(getType()) || isa(getType())) return getSequentialElement(); return getStructElement(Idx); } //===----------------------------------------------------------------------===// // ConstantXXX Classes //===----------------------------------------------------------------------===// template static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) { for (; Start != End; ++Start) if (*Start != Elt) return false; return true; } template static Constant *getIntSequenceIfElementsMatch(ArrayRef V) { assert(!V.empty() && "Cannot get empty int sequence."); SmallVector Elts; for (Constant *C : V) if (auto *CI = dyn_cast(C)) Elts.push_back(CI->getZExtValue()); else return nullptr; return SequentialTy::get(V[0]->getContext(), Elts); } template static Constant *getFPSequenceIfElementsMatch(ArrayRef V) { assert(!V.empty() && "Cannot get empty FP sequence."); SmallVector Elts; for (Constant *C : V) if (auto *CFP = dyn_cast(C)) Elts.push_back(CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); else return nullptr; return SequentialTy::getFP(V[0]->getType(), Elts); } template static Constant *getSequenceIfElementsMatch(Constant *C, ArrayRef V) { // We speculatively build the elements here even if it turns out that there is // a constantexpr or something else weird, since it is so uncommon for that to // happen. if (ConstantInt *CI = dyn_cast(C)) { if (CI->getType()->isIntegerTy(8)) return getIntSequenceIfElementsMatch(V); else if (CI->getType()->isIntegerTy(16)) return getIntSequenceIfElementsMatch(V); else if (CI->getType()->isIntegerTy(32)) return getIntSequenceIfElementsMatch(V); else if (CI->getType()->isIntegerTy(64)) return getIntSequenceIfElementsMatch(V); } else if (ConstantFP *CFP = dyn_cast(C)) { if (CFP->getType()->isHalfTy() || CFP->getType()->isBFloatTy()) return getFPSequenceIfElementsMatch(V); else if (CFP->getType()->isFloatTy()) return getFPSequenceIfElementsMatch(V); else if (CFP->getType()->isDoubleTy()) return getFPSequenceIfElementsMatch(V); } return nullptr; } ConstantAggregate::ConstantAggregate(Type *T, ValueTy VT, ArrayRef V) : Constant(T, VT, OperandTraits::op_end(this) - V.size(), V.size()) { llvm::copy(V, op_begin()); // Check that types match, unless this is an opaque struct. if (auto *ST = dyn_cast(T)) { if (ST->isOpaque()) return; for (unsigned I = 0, E = V.size(); I != E; ++I) assert(V[I]->getType() == ST->getTypeAtIndex(I) && "Initializer for struct element doesn't match!"); } } ConstantArray::ConstantArray(ArrayType *T, ArrayRef V) : ConstantAggregate(T, ConstantArrayVal, V) { assert(V.size() == T->getNumElements() && "Invalid initializer for constant array"); } Constant *ConstantArray::get(ArrayType *Ty, ArrayRef V) { if (Constant *C = getImpl(Ty, V)) return C; return Ty->getContext().pImpl->ArrayConstants.getOrCreate(Ty, V); } Constant *ConstantArray::getImpl(ArrayType *Ty, ArrayRef V) { // Empty arrays are canonicalized to ConstantAggregateZero. if (V.empty()) return ConstantAggregateZero::get(Ty); for (unsigned i = 0, e = V.size(); i != e; ++i) { assert(V[i]->getType() == Ty->getElementType() && "Wrong type in array element initializer"); } // If this is an all-zero array, return a ConstantAggregateZero object. If // all undef, return an UndefValue, if "all simple", then return a // ConstantDataArray. Constant *C = V[0]; if (isa(C) && rangeOnlyContains(V.begin(), V.end(), C)) return UndefValue::get(Ty); if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C)) return ConstantAggregateZero::get(Ty); // Check to see if all of the elements are ConstantFP or ConstantInt and if // the element type is compatible with ConstantDataVector. If so, use it. if (ConstantDataSequential::isElementTypeCompatible(C->getType())) return getSequenceIfElementsMatch(C, V); // Otherwise, we really do want to create a ConstantArray. return nullptr; } StructType *ConstantStruct::getTypeForElements(LLVMContext &Context, ArrayRef V, bool Packed) { unsigned VecSize = V.size(); SmallVector EltTypes(VecSize); for (unsigned i = 0; i != VecSize; ++i) EltTypes[i] = V[i]->getType(); return StructType::get(Context, EltTypes, Packed); } StructType *ConstantStruct::getTypeForElements(ArrayRef V, bool Packed) { assert(!V.empty() && "ConstantStruct::getTypeForElements cannot be called on empty list"); return getTypeForElements(V[0]->getContext(), V, Packed); } ConstantStruct::ConstantStruct(StructType *T, ArrayRef V) : ConstantAggregate(T, ConstantStructVal, V) { assert((T->isOpaque() || V.size() == T->getNumElements()) && "Invalid initializer for constant struct"); } // ConstantStruct accessors. Constant *ConstantStruct::get(StructType *ST, ArrayRef V) { assert((ST->isOpaque() || ST->getNumElements() == V.size()) && "Incorrect # elements specified to ConstantStruct::get"); // Create a ConstantAggregateZero value if all elements are zeros. bool isZero = true; bool isUndef = false; if (!V.empty()) { isUndef = isa(V[0]); isZero = V[0]->isNullValue(); if (isUndef || isZero) { for (unsigned i = 0, e = V.size(); i != e; ++i) { if (!V[i]->isNullValue()) isZero = false; if (!isa(V[i])) isUndef = false; } } } if (isZero) return ConstantAggregateZero::get(ST); if (isUndef) return UndefValue::get(ST); return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V); } ConstantVector::ConstantVector(VectorType *T, ArrayRef V) : ConstantAggregate(T, ConstantVectorVal, V) { assert(V.size() == cast(T)->getNumElements() && "Invalid initializer for constant vector"); } // ConstantVector accessors. Constant *ConstantVector::get(ArrayRef V) { if (Constant *C = getImpl(V)) return C; auto *Ty = FixedVectorType::get(V.front()->getType(), V.size()); return Ty->getContext().pImpl->VectorConstants.getOrCreate(Ty, V); } Constant *ConstantVector::getImpl(ArrayRef V) { assert(!V.empty() && "Vectors can't be empty"); auto *T = FixedVectorType::get(V.front()->getType(), V.size()); // If this is an all-undef or all-zero vector, return a // ConstantAggregateZero or UndefValue. Constant *C = V[0]; bool isZero = C->isNullValue(); bool isUndef = isa(C); if (isZero || isUndef) { for (unsigned i = 1, e = V.size(); i != e; ++i) if (V[i] != C) { isZero = isUndef = false; break; } } if (isZero) return ConstantAggregateZero::get(T); if (isUndef) return UndefValue::get(T); // Check to see if all of the elements are ConstantFP or ConstantInt and if // the element type is compatible with ConstantDataVector. If so, use it. if (ConstantDataSequential::isElementTypeCompatible(C->getType())) return getSequenceIfElementsMatch(C, V); // Otherwise, the element type isn't compatible with ConstantDataVector, or // the operand list contains a ConstantExpr or something else strange. return nullptr; } Constant *ConstantVector::getSplat(ElementCount EC, Constant *V) { if (!EC.isScalable()) { // If this splat is compatible with ConstantDataVector, use it instead of // ConstantVector. if ((isa(V) || isa(V)) && ConstantDataSequential::isElementTypeCompatible(V->getType())) return ConstantDataVector::getSplat(EC.getKnownMinValue(), V); SmallVector Elts(EC.getKnownMinValue(), V); return get(Elts); } Type *VTy = VectorType::get(V->getType(), EC); if (V->isNullValue()) return ConstantAggregateZero::get(VTy); else if (isa(V)) return UndefValue::get(VTy); Type *I32Ty = Type::getInt32Ty(VTy->getContext()); // Move scalar into vector. Constant *UndefV = UndefValue::get(VTy); V = ConstantExpr::getInsertElement(UndefV, V, ConstantInt::get(I32Ty, 0)); // Build shuffle mask to perform the splat. SmallVector Zeros(EC.getKnownMinValue(), 0); // Splat. return ConstantExpr::getShuffleVector(V, UndefV, Zeros); } ConstantTokenNone *ConstantTokenNone::get(LLVMContext &Context) { LLVMContextImpl *pImpl = Context.pImpl; if (!pImpl->TheNoneToken) pImpl->TheNoneToken.reset(new ConstantTokenNone(Context)); return pImpl->TheNoneToken.get(); } /// Remove the constant from the constant table. void ConstantTokenNone::destroyConstantImpl() { llvm_unreachable("You can't ConstantTokenNone->destroyConstantImpl()!"); } // Utility function for determining if a ConstantExpr is a CastOp or not. This // can't be inline because we don't want to #include Instruction.h into // Constant.h bool ConstantExpr::isCast() const { return Instruction::isCast(getOpcode()); } bool ConstantExpr::isCompare() const { return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp; } bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const { if (getOpcode() != Instruction::GetElementPtr) return false; gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this); User::const_op_iterator OI = std::next(this->op_begin()); // The remaining indices may be compile-time known integers within the bounds // of the corresponding notional static array types. for (; GEPI != E; ++GEPI, ++OI) { if (isa(*OI)) continue; auto *CI = dyn_cast(*OI); if (!CI || (GEPI.isBoundedSequential() && (CI->getValue().getActiveBits() > 64 || CI->getZExtValue() >= GEPI.getSequentialNumElements()))) return false; } // All the indices checked out. return true; } bool ConstantExpr::hasIndices() const { return getOpcode() == Instruction::ExtractValue || getOpcode() == Instruction::InsertValue; } ArrayRef ConstantExpr::getIndices() const { if (const ExtractValueConstantExpr *EVCE = dyn_cast(this)) return EVCE->Indices; return cast(this)->Indices; } unsigned ConstantExpr::getPredicate() const { return cast(this)->predicate; } ArrayRef ConstantExpr::getShuffleMask() const { return cast(this)->ShuffleMask; } Constant *ConstantExpr::getShuffleMaskForBitcode() const { return cast(this)->ShuffleMaskForBitcode; } Constant * ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const { assert(Op->getType() == getOperand(OpNo)->getType() && "Replacing operand with value of different type!"); if (getOperand(OpNo) == Op) return const_cast(this); SmallVector NewOps; for (unsigned i = 0, e = getNumOperands(); i != e; ++i) NewOps.push_back(i == OpNo ? Op : getOperand(i)); return getWithOperands(NewOps); } Constant *ConstantExpr::getWithOperands(ArrayRef Ops, Type *Ty, bool OnlyIfReduced, Type *SrcTy) const { assert(Ops.size() == getNumOperands() && "Operand count mismatch!"); // If no operands changed return self. if (Ty == getType() && std::equal(Ops.begin(), Ops.end(), op_begin())) return const_cast(this); Type *OnlyIfReducedTy = OnlyIfReduced ? Ty : nullptr; switch (getOpcode()) { case Instruction::Trunc: case Instruction::ZExt: case Instruction::SExt: case Instruction::FPTrunc: case Instruction::FPExt: case Instruction::UIToFP: case Instruction::SIToFP: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::PtrToInt: case Instruction::IntToPtr: case Instruction::BitCast: case Instruction::AddrSpaceCast: return ConstantExpr::getCast(getOpcode(), Ops[0], Ty, OnlyIfReduced); case Instruction::Select: return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2], OnlyIfReducedTy); case Instruction::InsertElement: return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2], OnlyIfReducedTy); case Instruction::ExtractElement: return ConstantExpr::getExtractElement(Ops[0], Ops[1], OnlyIfReducedTy); case Instruction::InsertValue: return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices(), OnlyIfReducedTy); case Instruction::ExtractValue: return ConstantExpr::getExtractValue(Ops[0], getIndices(), OnlyIfReducedTy); case Instruction::FNeg: return ConstantExpr::getFNeg(Ops[0]); case Instruction::ShuffleVector: return ConstantExpr::getShuffleVector(Ops[0], Ops[1], getShuffleMask(), OnlyIfReducedTy); case Instruction::GetElementPtr: { auto *GEPO = cast(this); assert(SrcTy || (Ops[0]->getType() == getOperand(0)->getType())); return ConstantExpr::getGetElementPtr( SrcTy ? SrcTy : GEPO->getSourceElementType(), Ops[0], Ops.slice(1), GEPO->isInBounds(), GEPO->getInRangeIndex(), OnlyIfReducedTy); } case Instruction::ICmp: case Instruction::FCmp: return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1], OnlyIfReducedTy); default: assert(getNumOperands() == 2 && "Must be binary operator?"); return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData, OnlyIfReducedTy); } } //===----------------------------------------------------------------------===// // isValueValidForType implementations bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) { unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay if (Ty->isIntegerTy(1)) return Val == 0 || Val == 1; return isUIntN(NumBits, Val); } bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) { unsigned NumBits = Ty->getIntegerBitWidth(); if (Ty->isIntegerTy(1)) return Val == 0 || Val == 1 || Val == -1; return isIntN(NumBits, Val); } bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) { // convert modifies in place, so make a copy. APFloat Val2 = APFloat(Val); bool losesInfo; switch (Ty->getTypeID()) { default: return false; // These can't be represented as floating point! // FIXME rounding mode needs to be more flexible case Type::HalfTyID: { if (&Val2.getSemantics() == &APFloat::IEEEhalf()) return true; Val2.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &losesInfo); return !losesInfo; } case Type::BFloatTyID: { if (&Val2.getSemantics() == &APFloat::BFloat()) return true; Val2.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven, &losesInfo); return !losesInfo; } case Type::FloatTyID: { if (&Val2.getSemantics() == &APFloat::IEEEsingle()) return true; Val2.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &losesInfo); return !losesInfo; } case Type::DoubleTyID: { if (&Val2.getSemantics() == &APFloat::IEEEhalf() || &Val2.getSemantics() == &APFloat::BFloat() || &Val2.getSemantics() == &APFloat::IEEEsingle() || &Val2.getSemantics() == &APFloat::IEEEdouble()) return true; Val2.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &losesInfo); return !losesInfo; } case Type::X86_FP80TyID: return &Val2.getSemantics() == &APFloat::IEEEhalf() || &Val2.getSemantics() == &APFloat::BFloat() || &Val2.getSemantics() == &APFloat::IEEEsingle() || &Val2.getSemantics() == &APFloat::IEEEdouble() || &Val2.getSemantics() == &APFloat::x87DoubleExtended(); case Type::FP128TyID: return &Val2.getSemantics() == &APFloat::IEEEhalf() || &Val2.getSemantics() == &APFloat::BFloat() || &Val2.getSemantics() == &APFloat::IEEEsingle() || &Val2.getSemantics() == &APFloat::IEEEdouble() || &Val2.getSemantics() == &APFloat::IEEEquad(); case Type::PPC_FP128TyID: return &Val2.getSemantics() == &APFloat::IEEEhalf() || &Val2.getSemantics() == &APFloat::BFloat() || &Val2.getSemantics() == &APFloat::IEEEsingle() || &Val2.getSemantics() == &APFloat::IEEEdouble() || &Val2.getSemantics() == &APFloat::PPCDoubleDouble(); } } //===----------------------------------------------------------------------===// // Factory Function Implementation ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) { assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) && "Cannot create an aggregate zero of non-aggregate type!"); std::unique_ptr &Entry = Ty->getContext().pImpl->CAZConstants[Ty]; if (!Entry) Entry.reset(new ConstantAggregateZero(Ty)); return Entry.get(); } /// Remove the constant from the constant table. void ConstantAggregateZero::destroyConstantImpl() { getContext().pImpl->CAZConstants.erase(getType()); } /// Remove the constant from the constant table. void ConstantArray::destroyConstantImpl() { getType()->getContext().pImpl->ArrayConstants.remove(this); } //---- ConstantStruct::get() implementation... // /// Remove the constant from the constant table. void ConstantStruct::destroyConstantImpl() { getType()->getContext().pImpl->StructConstants.remove(this); } /// Remove the constant from the constant table. void ConstantVector::destroyConstantImpl() { getType()->getContext().pImpl->VectorConstants.remove(this); } Constant *Constant::getSplatValue(bool AllowUndefs) const { assert(this->getType()->isVectorTy() && "Only valid for vectors!"); if (isa(this)) return getNullValue(cast(getType())->getElementType()); if (const ConstantDataVector *CV = dyn_cast(this)) return CV->getSplatValue(); if (const ConstantVector *CV = dyn_cast(this)) return CV->getSplatValue(AllowUndefs); // Check if this is a constant expression splat of the form returned by // ConstantVector::getSplat() const auto *Shuf = dyn_cast(this); if (Shuf && Shuf->getOpcode() == Instruction::ShuffleVector && isa(Shuf->getOperand(1))) { const auto *IElt = dyn_cast(Shuf->getOperand(0)); if (IElt && IElt->getOpcode() == Instruction::InsertElement && isa(IElt->getOperand(0))) { ArrayRef Mask = Shuf->getShuffleMask(); Constant *SplatVal = IElt->getOperand(1); ConstantInt *Index = dyn_cast(IElt->getOperand(2)); if (Index && Index->getValue() == 0 && std::all_of(Mask.begin(), Mask.end(), [](int I) { return I == 0; })) return SplatVal; } } return nullptr; } Constant *ConstantVector::getSplatValue(bool AllowUndefs) const { // Check out first element. Constant *Elt = getOperand(0); // Then make sure all remaining elements point to the same value. for (unsigned I = 1, E = getNumOperands(); I < E; ++I) { Constant *OpC = getOperand(I); if (OpC == Elt) continue; // Strict mode: any mismatch is not a splat. if (!AllowUndefs) return nullptr; // Allow undefs mode: ignore undefined elements. if (isa(OpC)) continue; // If we do not have a defined element yet, use the current operand. if (isa(Elt)) Elt = OpC; if (OpC != Elt) return nullptr; } return Elt; } const APInt &Constant::getUniqueInteger() const { if (const ConstantInt *CI = dyn_cast(this)) return CI->getValue(); assert(this->getSplatValue() && "Doesn't contain a unique integer!"); const Constant *C = this->getAggregateElement(0U); assert(C && isa(C) && "Not a vector of numbers!"); return cast(C)->getValue(); } //---- ConstantPointerNull::get() implementation. // ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) { std::unique_ptr &Entry = Ty->getContext().pImpl->CPNConstants[Ty]; if (!Entry) Entry.reset(new ConstantPointerNull(Ty)); return Entry.get(); } /// Remove the constant from the constant table. void ConstantPointerNull::destroyConstantImpl() { getContext().pImpl->CPNConstants.erase(getType()); } UndefValue *UndefValue::get(Type *Ty) { std::unique_ptr &Entry = Ty->getContext().pImpl->UVConstants[Ty]; if (!Entry) Entry.reset(new UndefValue(Ty)); return Entry.get(); } /// Remove the constant from the constant table. void UndefValue::destroyConstantImpl() { // Free the constant and any dangling references to it. if (getValueID() == UndefValueVal) { getContext().pImpl->UVConstants.erase(getType()); } else if (getValueID() == PoisonValueVal) { getContext().pImpl->PVConstants.erase(getType()); } llvm_unreachable("Not a undef or a poison!"); } PoisonValue *PoisonValue::get(Type *Ty) { std::unique_ptr &Entry = Ty->getContext().pImpl->PVConstants[Ty]; if (!Entry) Entry.reset(new PoisonValue(Ty)); return Entry.get(); } /// Remove the constant from the constant table. void PoisonValue::destroyConstantImpl() { // Free the constant and any dangling references to it. getContext().pImpl->PVConstants.erase(getType()); } BlockAddress *BlockAddress::get(BasicBlock *BB) { assert(BB->getParent() && "Block must have a parent"); return get(BB->getParent(), BB); } BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) { BlockAddress *&BA = F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)]; if (!BA) BA = new BlockAddress(F, BB); assert(BA->getFunction() == F && "Basic block moved between functions"); return BA; } BlockAddress::BlockAddress(Function *F, BasicBlock *BB) : Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal, &Op<0>(), 2) { setOperand(0, F); setOperand(1, BB); BB->AdjustBlockAddressRefCount(1); } BlockAddress *BlockAddress::lookup(const BasicBlock *BB) { if (!BB->hasAddressTaken()) return nullptr; const Function *F = BB->getParent(); assert(F && "Block must have a parent"); BlockAddress *BA = F->getContext().pImpl->BlockAddresses.lookup(std::make_pair(F, BB)); assert(BA && "Refcount and block address map disagree!"); return BA; } /// Remove the constant from the constant table. void BlockAddress::destroyConstantImpl() { getFunction()->getType()->getContext().pImpl ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock())); getBasicBlock()->AdjustBlockAddressRefCount(-1); } Value *BlockAddress::handleOperandChangeImpl(Value *From, Value *To) { // This could be replacing either the Basic Block or the Function. In either // case, we have to remove the map entry. Function *NewF = getFunction(); BasicBlock *NewBB = getBasicBlock(); if (From == NewF) NewF = cast(To->stripPointerCasts()); else { assert(From == NewBB && "From does not match any operand"); NewBB = cast(To); } // See if the 'new' entry already exists, if not, just update this in place // and return early. BlockAddress *&NewBA = getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)]; if (NewBA) return NewBA; getBasicBlock()->AdjustBlockAddressRefCount(-1); // Remove the old entry, this can't cause the map to rehash (just a // tombstone will get added). getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock())); NewBA = this; setOperand(0, NewF); setOperand(1, NewBB); getBasicBlock()->AdjustBlockAddressRefCount(1); // If we just want to keep the existing value, then return null. // Callers know that this means we shouldn't delete this value. return nullptr; } DSOLocalEquivalent *DSOLocalEquivalent::get(GlobalValue *GV) { DSOLocalEquivalent *&Equiv = GV->getContext().pImpl->DSOLocalEquivalents[GV]; if (!Equiv) Equiv = new DSOLocalEquivalent(GV); assert(Equiv->getGlobalValue() == GV && "DSOLocalFunction does not match the expected global value"); return Equiv; } DSOLocalEquivalent::DSOLocalEquivalent(GlobalValue *GV) : Constant(GV->getType(), Value::DSOLocalEquivalentVal, &Op<0>(), 1) { setOperand(0, GV); } /// Remove the constant from the constant table. void DSOLocalEquivalent::destroyConstantImpl() { const GlobalValue *GV = getGlobalValue(); GV->getContext().pImpl->DSOLocalEquivalents.erase(GV); } Value *DSOLocalEquivalent::handleOperandChangeImpl(Value *From, Value *To) { assert(From == getGlobalValue() && "Changing value does not match operand."); assert(isa(To) && "Can only replace the operands with a constant"); // The replacement is with another global value. if (const auto *ToObj = dyn_cast(To)) { DSOLocalEquivalent *&NewEquiv = getContext().pImpl->DSOLocalEquivalents[ToObj]; if (NewEquiv) return llvm::ConstantExpr::getBitCast(NewEquiv, getType()); } // If the argument is replaced with a null value, just replace this constant // with a null value. if (cast(To)->isNullValue()) return To; // The replacement could be a bitcast or an alias to another function. We can // replace it with a bitcast to the dso_local_equivalent of that function. auto *Func = cast(To->stripPointerCastsAndAliases()); DSOLocalEquivalent *&NewEquiv = getContext().pImpl->DSOLocalEquivalents[Func]; if (NewEquiv) return llvm::ConstantExpr::getBitCast(NewEquiv, getType()); // Replace this with the new one. getContext().pImpl->DSOLocalEquivalents.erase(getGlobalValue()); NewEquiv = this; setOperand(0, Func); return nullptr; } //---- ConstantExpr::get() implementations. // /// This is a utility function to handle folding of casts and lookup of the /// cast in the ExprConstants map. It is used by the various get* methods below. static Constant *getFoldedCast(Instruction::CastOps opc, Constant *C, Type *Ty, bool OnlyIfReduced = false) { assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!"); // Fold a few common cases if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty)) return FC; if (OnlyIfReduced) return nullptr; LLVMContextImpl *pImpl = Ty->getContext().pImpl; // Look up the constant in the table first to ensure uniqueness. ConstantExprKeyType Key(opc, C); return pImpl->ExprConstants.getOrCreate(Ty, Key); } Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty, bool OnlyIfReduced) { Instruction::CastOps opc = Instruction::CastOps(oc); assert(Instruction::isCast(opc) && "opcode out of range"); assert(C && Ty && "Null arguments to getCast"); assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!"); switch (opc) { default: llvm_unreachable("Invalid cast opcode"); case Instruction::Trunc: return getTrunc(C, Ty, OnlyIfReduced); case Instruction::ZExt: return getZExt(C, Ty, OnlyIfReduced); case Instruction::SExt: return getSExt(C, Ty, OnlyIfReduced); case Instruction::FPTrunc: return getFPTrunc(C, Ty, OnlyIfReduced); case Instruction::FPExt: return getFPExtend(C, Ty, OnlyIfReduced); case Instruction::UIToFP: return getUIToFP(C, Ty, OnlyIfReduced); case Instruction::SIToFP: return getSIToFP(C, Ty, OnlyIfReduced); case Instruction::FPToUI: return getFPToUI(C, Ty, OnlyIfReduced); case Instruction::FPToSI: return getFPToSI(C, Ty, OnlyIfReduced); case Instruction::PtrToInt: return getPtrToInt(C, Ty, OnlyIfReduced); case Instruction::IntToPtr: return getIntToPtr(C, Ty, OnlyIfReduced); case Instruction::BitCast: return getBitCast(C, Ty, OnlyIfReduced); case Instruction::AddrSpaceCast: return getAddrSpaceCast(C, Ty, OnlyIfReduced); } } Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) { if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) return getBitCast(C, Ty); return getZExt(C, Ty); } Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) { if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) return getBitCast(C, Ty); return getSExt(C, Ty); } Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) { if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) return getBitCast(C, Ty); return getTrunc(C, Ty); } Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) { assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) && "Invalid cast"); if (Ty->isIntOrIntVectorTy()) return getPtrToInt(S, Ty); unsigned SrcAS = S->getType()->getPointerAddressSpace(); if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace()) return getAddrSpaceCast(S, Ty); return getBitCast(S, Ty); } Constant *ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant *S, Type *Ty) { assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast"); if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace()) return getAddrSpaceCast(S, Ty); return getBitCast(S, Ty); } Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty, bool isSigned) { assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() && "Invalid cast"); unsigned SrcBits = C->getType()->getScalarSizeInBits(); unsigned DstBits = Ty->getScalarSizeInBits(); Instruction::CastOps opcode = (SrcBits == DstBits ? Instruction::BitCast : (SrcBits > DstBits ? Instruction::Trunc : (isSigned ? Instruction::SExt : Instruction::ZExt))); return getCast(opcode, C, Ty); } Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) { assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && "Invalid cast"); unsigned SrcBits = C->getType()->getScalarSizeInBits(); unsigned DstBits = Ty->getScalarSizeInBits(); if (SrcBits == DstBits) return C; // Avoid a useless cast Instruction::CastOps opcode = (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt); return getCast(opcode, C, Ty); } Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) { #ifndef NDEBUG bool fromVec = isa(C->getType()); bool toVec = isa(Ty); #endif assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer"); assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral"); assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&& "SrcTy must be larger than DestTy for Trunc!"); return getFoldedCast(Instruction::Trunc, C, Ty, OnlyIfReduced); } Constant *ConstantExpr::getSExt(Constant *C, Type *Ty, bool OnlyIfReduced) { #ifndef NDEBUG bool fromVec = isa(C->getType()); bool toVec = isa(Ty); #endif assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral"); assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer"); assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& "SrcTy must be smaller than DestTy for SExt!"); return getFoldedCast(Instruction::SExt, C, Ty, OnlyIfReduced); } Constant *ConstantExpr::getZExt(Constant *C, Type *Ty, bool OnlyIfReduced) { #ifndef NDEBUG bool fromVec = isa(C->getType()); bool toVec = isa(Ty); #endif assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral"); assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer"); assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& "SrcTy must be smaller than DestTy for ZExt!"); return getFoldedCast(Instruction::ZExt, C, Ty, OnlyIfReduced); } Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) { #ifndef NDEBUG bool fromVec = isa(C->getType()); bool toVec = isa(Ty); #endif assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&& "This is an illegal floating point truncation!"); return getFoldedCast(Instruction::FPTrunc, C, Ty, OnlyIfReduced); } Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty, bool OnlyIfReduced) { #ifndef NDEBUG bool fromVec = isa(C->getType()); bool toVec = isa(Ty); #endif assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& "This is an illegal floating point extension!"); return getFoldedCast(Instruction::FPExt, C, Ty, OnlyIfReduced); } Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) { #ifndef NDEBUG bool fromVec = isa(C->getType()); bool toVec = isa(Ty); #endif assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() && "This is an illegal uint to floating point cast!"); return getFoldedCast(Instruction::UIToFP, C, Ty, OnlyIfReduced); } Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) { #ifndef NDEBUG bool fromVec = isa(C->getType()); bool toVec = isa(Ty); #endif assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() && "This is an illegal sint to floating point cast!"); return getFoldedCast(Instruction::SIToFP, C, Ty, OnlyIfReduced); } Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced) { #ifndef NDEBUG bool fromVec = isa(C->getType()); bool toVec = isa(Ty); #endif assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() && "This is an illegal floating point to uint cast!"); return getFoldedCast(Instruction::FPToUI, C, Ty, OnlyIfReduced); } Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced) { #ifndef NDEBUG bool fromVec = isa(C->getType()); bool toVec = isa(Ty); #endif assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() && "This is an illegal floating point to sint cast!"); return getFoldedCast(Instruction::FPToSI, C, Ty, OnlyIfReduced); } Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy, bool OnlyIfReduced) { assert(C->getType()->isPtrOrPtrVectorTy() && "PtrToInt source must be pointer or pointer vector"); assert(DstTy->isIntOrIntVectorTy() && "PtrToInt destination must be integer or integer vector"); assert(isa(C->getType()) == isa(DstTy)); if (isa(C->getType())) assert(cast(C->getType())->getNumElements() == cast(DstTy)->getNumElements() && "Invalid cast between a different number of vector elements"); return getFoldedCast(Instruction::PtrToInt, C, DstTy, OnlyIfReduced); } Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy, bool OnlyIfReduced) { assert(C->getType()->isIntOrIntVectorTy() && "IntToPtr source must be integer or integer vector"); assert(DstTy->isPtrOrPtrVectorTy() && "IntToPtr destination must be a pointer or pointer vector"); assert(isa(C->getType()) == isa(DstTy)); if (isa(C->getType())) assert(cast(C->getType())->getElementCount() == cast(DstTy)->getElementCount() && "Invalid cast between a different number of vector elements"); return getFoldedCast(Instruction::IntToPtr, C, DstTy, OnlyIfReduced); } Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy, bool OnlyIfReduced) { assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) && "Invalid constantexpr bitcast!"); // It is common to ask for a bitcast of a value to its own type, handle this // speedily. if (C->getType() == DstTy) return C; return getFoldedCast(Instruction::BitCast, C, DstTy, OnlyIfReduced); } Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy, bool OnlyIfReduced) { assert(CastInst::castIsValid(Instruction::AddrSpaceCast, C, DstTy) && "Invalid constantexpr addrspacecast!"); // Canonicalize addrspacecasts between different pointer types by first // bitcasting the pointer type and then converting the address space. PointerType *SrcScalarTy = cast(C->getType()->getScalarType()); PointerType *DstScalarTy = cast(DstTy->getScalarType()); Type *DstElemTy = DstScalarTy->getElementType(); if (SrcScalarTy->getElementType() != DstElemTy) { Type *MidTy = PointerType::get(DstElemTy, SrcScalarTy->getAddressSpace()); if (VectorType *VT = dyn_cast(DstTy)) { // Handle vectors of pointers. MidTy = FixedVectorType::get(MidTy, cast(VT)->getNumElements()); } C = getBitCast(C, MidTy); } return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy, OnlyIfReduced); } Constant *ConstantExpr::get(unsigned Opcode, Constant *C, unsigned Flags, Type *OnlyIfReducedTy) { // Check the operands for consistency first. assert(Instruction::isUnaryOp(Opcode) && "Invalid opcode in unary constant expression"); #ifndef NDEBUG switch (Opcode) { case Instruction::FNeg: assert(C->getType()->isFPOrFPVectorTy() && "Tried to create a floating-point operation on a " "non-floating-point type!"); break; default: break; } #endif if (Constant *FC = ConstantFoldUnaryInstruction(Opcode, C)) return FC; if (OnlyIfReducedTy == C->getType()) return nullptr; Constant *ArgVec[] = { C }; ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags); LLVMContextImpl *pImpl = C->getContext().pImpl; return pImpl->ExprConstants.getOrCreate(C->getType(), Key); } Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2, unsigned Flags, Type *OnlyIfReducedTy) { // Check the operands for consistency first. assert(Instruction::isBinaryOp(Opcode) && "Invalid opcode in binary constant expression"); assert(C1->getType() == C2->getType() && "Operand types in binary constant expression should match"); #ifndef NDEBUG switch (Opcode) { case Instruction::Add: case Instruction::Sub: case Instruction::Mul: case Instruction::UDiv: case Instruction::SDiv: case Instruction::URem: case Instruction::SRem: assert(C1->getType()->isIntOrIntVectorTy() && "Tried to create an integer operation on a non-integer type!"); break; case Instruction::FAdd: case Instruction::FSub: case Instruction::FMul: case Instruction::FDiv: case Instruction::FRem: assert(C1->getType()->isFPOrFPVectorTy() && "Tried to create a floating-point operation on a " "non-floating-point type!"); break; case Instruction::And: case Instruction::Or: case Instruction::Xor: assert(C1->getType()->isIntOrIntVectorTy() && "Tried to create a logical operation on a non-integral type!"); break; case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: assert(C1->getType()->isIntOrIntVectorTy() && "Tried to create a shift operation on a non-integer type!"); break; default: break; } #endif if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2)) return FC; if (OnlyIfReducedTy == C1->getType()) return nullptr; Constant *ArgVec[] = { C1, C2 }; ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags); LLVMContextImpl *pImpl = C1->getContext().pImpl; return pImpl->ExprConstants.getOrCreate(C1->getType(), Key); } Constant *ConstantExpr::getSizeOf(Type* Ty) { // sizeof is implemented as: (i64) gep (Ty*)null, 1 // Note that a non-inbounds gep is used, as null isn't within any object. Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1); Constant *GEP = getGetElementPtr( Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx); return getPtrToInt(GEP, Type::getInt64Ty(Ty->getContext())); } Constant *ConstantExpr::getAlignOf(Type* Ty) { // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1 // Note that a non-inbounds gep is used, as null isn't within any object. Type *AligningTy = StructType::get(Type::getInt1Ty(Ty->getContext()), Ty); Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo(0)); Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0); Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1); Constant *Indices[2] = { Zero, One }; Constant *GEP = getGetElementPtr(AligningTy, NullPtr, Indices); return getPtrToInt(GEP, Type::getInt64Ty(Ty->getContext())); } Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) { return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()), FieldNo)); } Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) { // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo // Note that a non-inbounds gep is used, as null isn't within any object. Constant *GEPIdx[] = { ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0), FieldNo }; Constant *GEP = getGetElementPtr( Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx); return getPtrToInt(GEP, Type::getInt64Ty(Ty->getContext())); } Constant *ConstantExpr::getCompare(unsigned short Predicate, Constant *C1, Constant *C2, bool OnlyIfReduced) { assert(C1->getType() == C2->getType() && "Op types should be identical!"); switch (Predicate) { default: llvm_unreachable("Invalid CmpInst predicate"); case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT: case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE: case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO: case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE: case CmpInst::FCMP_TRUE: return getFCmp(Predicate, C1, C2, OnlyIfReduced); case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT: case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE: case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT: case CmpInst::ICMP_SLE: return getICmp(Predicate, C1, C2, OnlyIfReduced); } } Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2, Type *OnlyIfReducedTy) { assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands"); if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2)) return SC; // Fold common cases if (OnlyIfReducedTy == V1->getType()) return nullptr; Constant *ArgVec[] = { C, V1, V2 }; ConstantExprKeyType Key(Instruction::Select, ArgVec); LLVMContextImpl *pImpl = C->getContext().pImpl; return pImpl->ExprConstants.getOrCreate(V1->getType(), Key); } Constant *ConstantExpr::getGetElementPtr(Type *Ty, Constant *C, ArrayRef Idxs, bool InBounds, Optional InRangeIndex, Type *OnlyIfReducedTy) { if (!Ty) Ty = cast(C->getType()->getScalarType())->getElementType(); else assert(Ty == cast(C->getType()->getScalarType())->getElementType()); if (Constant *FC = ConstantFoldGetElementPtr(Ty, C, InBounds, InRangeIndex, Idxs)) return FC; // Fold a few common cases. // Get the result type of the getelementptr! Type *DestTy = GetElementPtrInst::getIndexedType(Ty, Idxs); assert(DestTy && "GEP indices invalid!"); unsigned AS = C->getType()->getPointerAddressSpace(); Type *ReqTy = DestTy->getPointerTo(AS); auto EltCount = ElementCount::getFixed(0); if (VectorType *VecTy = dyn_cast(C->getType())) EltCount = VecTy->getElementCount(); else for (auto Idx : Idxs) if (VectorType *VecTy = dyn_cast(Idx->getType())) EltCount = VecTy->getElementCount(); if (EltCount.isNonZero()) ReqTy = VectorType::get(ReqTy, EltCount); if (OnlyIfReducedTy == ReqTy) return nullptr; // Look up the constant in the table first to ensure uniqueness std::vector ArgVec; ArgVec.reserve(1 + Idxs.size()); ArgVec.push_back(C); auto GTI = gep_type_begin(Ty, Idxs), GTE = gep_type_end(Ty, Idxs); for (; GTI != GTE; ++GTI) { auto *Idx = cast(GTI.getOperand()); assert( (!isa(Idx->getType()) || cast(Idx->getType())->getElementCount() == EltCount) && "getelementptr index type missmatch"); if (GTI.isStruct() && Idx->getType()->isVectorTy()) { Idx = Idx->getSplatValue(); } else if (GTI.isSequential() && EltCount.isNonZero() && !Idx->getType()->isVectorTy()) { Idx = ConstantVector::getSplat(EltCount, Idx); } ArgVec.push_back(Idx); } unsigned SubClassOptionalData = InBounds ? GEPOperator::IsInBounds : 0; if (InRangeIndex && *InRangeIndex < 63) SubClassOptionalData |= (*InRangeIndex + 1) << 1; const ConstantExprKeyType Key(Instruction::GetElementPtr, ArgVec, 0, SubClassOptionalData, None, None, Ty); LLVMContextImpl *pImpl = C->getContext().pImpl; return pImpl->ExprConstants.getOrCreate(ReqTy, Key); } Constant *ConstantExpr::getICmp(unsigned short pred, Constant *LHS, Constant *RHS, bool OnlyIfReduced) { assert(LHS->getType() == RHS->getType()); assert(CmpInst::isIntPredicate((CmpInst::Predicate)pred) && "Invalid ICmp Predicate"); if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS)) return FC; // Fold a few common cases... if (OnlyIfReduced) return nullptr; // Look up the constant in the table first to ensure uniqueness Constant *ArgVec[] = { LHS, RHS }; // Get the key type with both the opcode and predicate const ConstantExprKeyType Key(Instruction::ICmp, ArgVec, pred); Type *ResultTy = Type::getInt1Ty(LHS->getContext()); if (VectorType *VT = dyn_cast(LHS->getType())) ResultTy = VectorType::get(ResultTy, VT->getElementCount()); LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl; return pImpl->ExprConstants.getOrCreate(ResultTy, Key); } Constant *ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, Constant *RHS, bool OnlyIfReduced) { assert(LHS->getType() == RHS->getType()); assert(CmpInst::isFPPredicate((CmpInst::Predicate)pred) && "Invalid FCmp Predicate"); if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS)) return FC; // Fold a few common cases... if (OnlyIfReduced) return nullptr; // Look up the constant in the table first to ensure uniqueness Constant *ArgVec[] = { LHS, RHS }; // Get the key type with both the opcode and predicate const ConstantExprKeyType Key(Instruction::FCmp, ArgVec, pred); Type *ResultTy = Type::getInt1Ty(LHS->getContext()); if (VectorType *VT = dyn_cast(LHS->getType())) ResultTy = VectorType::get(ResultTy, VT->getElementCount()); LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl; return pImpl->ExprConstants.getOrCreate(ResultTy, Key); } Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx, Type *OnlyIfReducedTy) { assert(Val->getType()->isVectorTy() && "Tried to create extractelement operation on non-vector type!"); assert(Idx->getType()->isIntegerTy() && "Extractelement index must be an integer type!"); if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx)) return FC; // Fold a few common cases. Type *ReqTy = cast(Val->getType())->getElementType(); if (OnlyIfReducedTy == ReqTy) return nullptr; // Look up the constant in the table first to ensure uniqueness Constant *ArgVec[] = { Val, Idx }; const ConstantExprKeyType Key(Instruction::ExtractElement, ArgVec); LLVMContextImpl *pImpl = Val->getContext().pImpl; return pImpl->ExprConstants.getOrCreate(ReqTy, Key); } Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt, Constant *Idx, Type *OnlyIfReducedTy) { assert(Val->getType()->isVectorTy() && "Tried to create insertelement operation on non-vector type!"); assert(Elt->getType() == cast(Val->getType())->getElementType() && "Insertelement types must match!"); assert(Idx->getType()->isIntegerTy() && "Insertelement index must be i32 type!"); if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx)) return FC; // Fold a few common cases. if (OnlyIfReducedTy == Val->getType()) return nullptr; // Look up the constant in the table first to ensure uniqueness Constant *ArgVec[] = { Val, Elt, Idx }; const ConstantExprKeyType Key(Instruction::InsertElement, ArgVec); LLVMContextImpl *pImpl = Val->getContext().pImpl; return pImpl->ExprConstants.getOrCreate(Val->getType(), Key); } Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2, ArrayRef Mask, Type *OnlyIfReducedTy) { assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) && "Invalid shuffle vector constant expr operands!"); if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask)) return FC; // Fold a few common cases. unsigned NElts = Mask.size(); auto V1VTy = cast(V1->getType()); Type *EltTy = V1VTy->getElementType(); bool TypeIsScalable = isa(V1VTy); Type *ShufTy = VectorType::get(EltTy, NElts, TypeIsScalable); if (OnlyIfReducedTy == ShufTy) return nullptr; // Look up the constant in the table first to ensure uniqueness Constant *ArgVec[] = {V1, V2}; ConstantExprKeyType Key(Instruction::ShuffleVector, ArgVec, 0, 0, None, Mask); LLVMContextImpl *pImpl = ShufTy->getContext().pImpl; return pImpl->ExprConstants.getOrCreate(ShufTy, Key); } Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val, ArrayRef Idxs, Type *OnlyIfReducedTy) { assert(Agg->getType()->isFirstClassType() && "Non-first-class type for constant insertvalue expression"); assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) == Val->getType() && "insertvalue indices invalid!"); Type *ReqTy = Val->getType(); if (Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs)) return FC; if (OnlyIfReducedTy == ReqTy) return nullptr; Constant *ArgVec[] = { Agg, Val }; const ConstantExprKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs); LLVMContextImpl *pImpl = Agg->getContext().pImpl; return pImpl->ExprConstants.getOrCreate(ReqTy, Key); } Constant *ConstantExpr::getExtractValue(Constant *Agg, ArrayRef Idxs, Type *OnlyIfReducedTy) { assert(Agg->getType()->isFirstClassType() && "Tried to create extractelement operation on non-first-class type!"); Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs); (void)ReqTy; assert(ReqTy && "extractvalue indices invalid!"); assert(Agg->getType()->isFirstClassType() && "Non-first-class type for constant extractvalue expression"); if (Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs)) return FC; if (OnlyIfReducedTy == ReqTy) return nullptr; Constant *ArgVec[] = { Agg }; const ConstantExprKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs); LLVMContextImpl *pImpl = Agg->getContext().pImpl; return pImpl->ExprConstants.getOrCreate(ReqTy, Key); } Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) { assert(C->getType()->isIntOrIntVectorTy() && "Cannot NEG a nonintegral value!"); return getSub(ConstantFP::getZeroValueForNegation(C->getType()), C, HasNUW, HasNSW); } Constant *ConstantExpr::getFNeg(Constant *C) { assert(C->getType()->isFPOrFPVectorTy() && "Cannot FNEG a non-floating-point value!"); return get(Instruction::FNeg, C); } Constant *ConstantExpr::getNot(Constant *C) { assert(C->getType()->isIntOrIntVectorTy() && "Cannot NOT a nonintegral value!"); return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType())); } Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2, bool HasNUW, bool HasNSW) { unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); return get(Instruction::Add, C1, C2, Flags); } Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) { return get(Instruction::FAdd, C1, C2); } Constant *ConstantExpr::getSub(Constant *C1, Constant *C2, bool HasNUW, bool HasNSW) { unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); return get(Instruction::Sub, C1, C2, Flags); } Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) { return get(Instruction::FSub, C1, C2); } Constant *ConstantExpr::getMul(Constant *C1, Constant *C2, bool HasNUW, bool HasNSW) { unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); return get(Instruction::Mul, C1, C2, Flags); } Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) { return get(Instruction::FMul, C1, C2); } Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) { return get(Instruction::UDiv, C1, C2, isExact ? PossiblyExactOperator::IsExact : 0); } Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) { return get(Instruction::SDiv, C1, C2, isExact ? PossiblyExactOperator::IsExact : 0); } Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) { return get(Instruction::FDiv, C1, C2); } Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) { return get(Instruction::URem, C1, C2); } Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) { return get(Instruction::SRem, C1, C2); } Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) { return get(Instruction::FRem, C1, C2); } Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) { return get(Instruction::And, C1, C2); } Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) { return get(Instruction::Or, C1, C2); } Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) { return get(Instruction::Xor, C1, C2); } Constant *ConstantExpr::getUMin(Constant *C1, Constant *C2) { Constant *Cmp = ConstantExpr::getICmp(CmpInst::ICMP_ULT, C1, C2); return getSelect(Cmp, C1, C2); } Constant *ConstantExpr::getShl(Constant *C1, Constant *C2, bool HasNUW, bool HasNSW) { unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); return get(Instruction::Shl, C1, C2, Flags); } Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) { return get(Instruction::LShr, C1, C2, isExact ? PossiblyExactOperator::IsExact : 0); } Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) { return get(Instruction::AShr, C1, C2, isExact ? PossiblyExactOperator::IsExact : 0); } Constant *ConstantExpr::getExactLogBase2(Constant *C) { Type *Ty = C->getType(); const APInt *IVal; if (match(C, m_APInt(IVal)) && IVal->isPowerOf2()) return ConstantInt::get(Ty, IVal->logBase2()); // FIXME: We can extract pow of 2 of splat constant for scalable vectors. auto *VecTy = dyn_cast(Ty); if (!VecTy) return nullptr; SmallVector Elts; for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { Constant *Elt = C->getAggregateElement(I); if (!Elt) return nullptr; // Note that log2(iN undef) is *NOT* iN undef, because log2(iN undef) u< N. if (isa(Elt)) { Elts.push_back(Constant::getNullValue(Ty->getScalarType())); continue; } if (!match(Elt, m_APInt(IVal)) || !IVal->isPowerOf2()) return nullptr; Elts.push_back(ConstantInt::get(Ty->getScalarType(), IVal->logBase2())); } return ConstantVector::get(Elts); } Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty, bool AllowRHSConstant) { assert(Instruction::isBinaryOp(Opcode) && "Only binops allowed"); // Commutative opcodes: it does not matter if AllowRHSConstant is set. if (Instruction::isCommutative(Opcode)) { switch (Opcode) { case Instruction::Add: // X + 0 = X case Instruction::Or: // X | 0 = X case Instruction::Xor: // X ^ 0 = X return Constant::getNullValue(Ty); case Instruction::Mul: // X * 1 = X return ConstantInt::get(Ty, 1); case Instruction::And: // X & -1 = X return Constant::getAllOnesValue(Ty); case Instruction::FAdd: // X + -0.0 = X // TODO: If the fadd has 'nsz', should we return +0.0? return ConstantFP::getNegativeZero(Ty); case Instruction::FMul: // X * 1.0 = X return ConstantFP::get(Ty, 1.0); default: llvm_unreachable("Every commutative binop has an identity constant"); } } // Non-commutative opcodes: AllowRHSConstant must be set. if (!AllowRHSConstant) return nullptr; switch (Opcode) { case Instruction::Sub: // X - 0 = X case Instruction::Shl: // X << 0 = X case Instruction::LShr: // X >>u 0 = X case Instruction::AShr: // X >> 0 = X case Instruction::FSub: // X - 0.0 = X return Constant::getNullValue(Ty); case Instruction::SDiv: // X / 1 = X case Instruction::UDiv: // X /u 1 = X return ConstantInt::get(Ty, 1); case Instruction::FDiv: // X / 1.0 = X return ConstantFP::get(Ty, 1.0); default: return nullptr; } } Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) { switch (Opcode) { default: // Doesn't have an absorber. return nullptr; case Instruction::Or: return Constant::getAllOnesValue(Ty); case Instruction::And: case Instruction::Mul: return Constant::getNullValue(Ty); } } /// Remove the constant from the constant table. void ConstantExpr::destroyConstantImpl() { getType()->getContext().pImpl->ExprConstants.remove(this); } const char *ConstantExpr::getOpcodeName() const { return Instruction::getOpcodeName(getOpcode()); } GetElementPtrConstantExpr::GetElementPtrConstantExpr( Type *SrcElementTy, Constant *C, ArrayRef IdxList, Type *DestTy) : ConstantExpr(DestTy, Instruction::GetElementPtr, OperandTraits::op_end(this) - (IdxList.size() + 1), IdxList.size() + 1), SrcElementTy(SrcElementTy), ResElementTy(GetElementPtrInst::getIndexedType(SrcElementTy, IdxList)) { Op<0>() = C; Use *OperandList = getOperandList(); for (unsigned i = 0, E = IdxList.size(); i != E; ++i) OperandList[i+1] = IdxList[i]; } Type *GetElementPtrConstantExpr::getSourceElementType() const { return SrcElementTy; } Type *GetElementPtrConstantExpr::getResultElementType() const { return ResElementTy; } //===----------------------------------------------------------------------===// // ConstantData* implementations Type *ConstantDataSequential::getElementType() const { if (ArrayType *ATy = dyn_cast(getType())) return ATy->getElementType(); return cast(getType())->getElementType(); } StringRef ConstantDataSequential::getRawDataValues() const { return StringRef(DataElements, getNumElements()*getElementByteSize()); } bool ConstantDataSequential::isElementTypeCompatible(Type *Ty) { if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || Ty->isDoubleTy()) return true; if (auto *IT = dyn_cast(Ty)) { switch (IT->getBitWidth()) { case 8: case 16: case 32: case 64: return true; default: break; } } return false; } unsigned ConstantDataSequential::getNumElements() const { if (ArrayType *AT = dyn_cast(getType())) return AT->getNumElements(); return cast(getType())->getNumElements(); } uint64_t ConstantDataSequential::getElementByteSize() const { return getElementType()->getPrimitiveSizeInBits()/8; } /// Return the start of the specified element. const char *ConstantDataSequential::getElementPointer(unsigned Elt) const { assert(Elt < getNumElements() && "Invalid Elt"); return DataElements+Elt*getElementByteSize(); } /// Return true if the array is empty or all zeros. static bool isAllZeros(StringRef Arr) { for (char I : Arr) if (I != 0) return false; return true; } /// This is the underlying implementation of all of the /// ConstantDataSequential::get methods. They all thunk down to here, providing /// the correct element type. We take the bytes in as a StringRef because /// we *want* an underlying "char*" to avoid TBAA type punning violations. Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) { #ifndef NDEBUG if (ArrayType *ATy = dyn_cast(Ty)) assert(isElementTypeCompatible(ATy->getElementType())); else assert(isElementTypeCompatible(cast(Ty)->getElementType())); #endif // If the elements are all zero or there are no elements, return a CAZ, which // is more dense and canonical. if (isAllZeros(Elements)) return ConstantAggregateZero::get(Ty); // Do a lookup to see if we have already formed one of these. auto &Slot = *Ty->getContext() .pImpl->CDSConstants.insert(std::make_pair(Elements, nullptr)) .first; // The bucket can point to a linked list of different CDS's that have the same // body but different types. For example, 0,0,0,1 could be a 4 element array // of i8, or a 1-element array of i32. They'll both end up in the same /// StringMap bucket, linked up by their Next pointers. Walk the list. std::unique_ptr *Entry = &Slot.second; for (; *Entry; Entry = &(*Entry)->Next) if ((*Entry)->getType() == Ty) return Entry->get(); // Okay, we didn't get a hit. Create a node of the right class, link it in, // and return it. if (isa(Ty)) { // Use reset because std::make_unique can't access the constructor. Entry->reset(new ConstantDataArray(Ty, Slot.first().data())); return Entry->get(); } assert(isa(Ty)); // Use reset because std::make_unique can't access the constructor. Entry->reset(new ConstantDataVector(Ty, Slot.first().data())); return Entry->get(); } void ConstantDataSequential::destroyConstantImpl() { // Remove the constant from the StringMap. StringMap> &CDSConstants = getType()->getContext().pImpl->CDSConstants; auto Slot = CDSConstants.find(getRawDataValues()); assert(Slot != CDSConstants.end() && "CDS not found in uniquing table"); std::unique_ptr *Entry = &Slot->getValue(); // Remove the entry from the hash table. if (!(*Entry)->Next) { // If there is only one value in the bucket (common case) it must be this // entry, and removing the entry should remove the bucket completely. assert(Entry->get() == this && "Hash mismatch in ConstantDataSequential"); getContext().pImpl->CDSConstants.erase(Slot); return; } // Otherwise, there are multiple entries linked off the bucket, unlink the // node we care about but keep the bucket around. while (true) { std::unique_ptr &Node = *Entry; assert(Node && "Didn't find entry in its uniquing hash table!"); // If we found our entry, unlink it from the list and we're done. if (Node.get() == this) { Node = std::move(Node->Next); return; } Entry = &Node->Next; } } /// getFP() constructors - Return a constant of array type with a float /// element type taken from argument `ElementType', and count taken from /// argument `Elts'. The amount of bits of the contained type must match the /// number of bits of the type contained in the passed in ArrayRef. /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note /// that this can return a ConstantAggregateZero object. Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef Elts) { assert((ElementType->isHalfTy() || ElementType->isBFloatTy()) && "Element type is not a 16-bit float type"); Type *Ty = ArrayType::get(ElementType, Elts.size()); const char *Data = reinterpret_cast(Elts.data()); return getImpl(StringRef(Data, Elts.size() * 2), Ty); } Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef Elts) { assert(ElementType->isFloatTy() && "Element type is not a 32-bit float type"); Type *Ty = ArrayType::get(ElementType, Elts.size()); const char *Data = reinterpret_cast(Elts.data()); return getImpl(StringRef(Data, Elts.size() * 4), Ty); } Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef Elts) { assert(ElementType->isDoubleTy() && "Element type is not a 64-bit float type"); Type *Ty = ArrayType::get(ElementType, Elts.size()); const char *Data = reinterpret_cast(Elts.data()); return getImpl(StringRef(Data, Elts.size() * 8), Ty); } Constant *ConstantDataArray::getString(LLVMContext &Context, StringRef Str, bool AddNull) { if (!AddNull) { const uint8_t *Data = Str.bytes_begin(); return get(Context, makeArrayRef(Data, Str.size())); } SmallVector ElementVals; ElementVals.append(Str.begin(), Str.end()); ElementVals.push_back(0); return get(Context, ElementVals); } /// get() constructors - Return a constant with vector type with an element /// count and element type matching the ArrayRef passed in. Note that this /// can return a ConstantAggregateZero object. Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef Elts){ auto *Ty = FixedVectorType::get(Type::getInt8Ty(Context), Elts.size()); const char *Data = reinterpret_cast(Elts.data()); return getImpl(StringRef(Data, Elts.size() * 1), Ty); } Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef Elts){ auto *Ty = FixedVectorType::get(Type::getInt16Ty(Context), Elts.size()); const char *Data = reinterpret_cast(Elts.data()); return getImpl(StringRef(Data, Elts.size() * 2), Ty); } Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef Elts){ auto *Ty = FixedVectorType::get(Type::getInt32Ty(Context), Elts.size()); const char *Data = reinterpret_cast(Elts.data()); return getImpl(StringRef(Data, Elts.size() * 4), Ty); } Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef Elts){ auto *Ty = FixedVectorType::get(Type::getInt64Ty(Context), Elts.size()); const char *Data = reinterpret_cast(Elts.data()); return getImpl(StringRef(Data, Elts.size() * 8), Ty); } Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef Elts) { auto *Ty = FixedVectorType::get(Type::getFloatTy(Context), Elts.size()); const char *Data = reinterpret_cast(Elts.data()); return getImpl(StringRef(Data, Elts.size() * 4), Ty); } Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef Elts) { auto *Ty = FixedVectorType::get(Type::getDoubleTy(Context), Elts.size()); const char *Data = reinterpret_cast(Elts.data()); return getImpl(StringRef(Data, Elts.size() * 8), Ty); } /// getFP() constructors - Return a constant of vector type with a float /// element type taken from argument `ElementType', and count taken from /// argument `Elts'. The amount of bits of the contained type must match the /// number of bits of the type contained in the passed in ArrayRef. /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note /// that this can return a ConstantAggregateZero object. Constant *ConstantDataVector::getFP(Type *ElementType, ArrayRef Elts) { assert((ElementType->isHalfTy() || ElementType->isBFloatTy()) && "Element type is not a 16-bit float type"); auto *Ty = FixedVectorType::get(ElementType, Elts.size()); const char *Data = reinterpret_cast(Elts.data()); return getImpl(StringRef(Data, Elts.size() * 2), Ty); } Constant *ConstantDataVector::getFP(Type *ElementType, ArrayRef Elts) { assert(ElementType->isFloatTy() && "Element type is not a 32-bit float type"); auto *Ty = FixedVectorType::get(ElementType, Elts.size()); const char *Data = reinterpret_cast(Elts.data()); return getImpl(StringRef(Data, Elts.size() * 4), Ty); } Constant *ConstantDataVector::getFP(Type *ElementType, ArrayRef Elts) { assert(ElementType->isDoubleTy() && "Element type is not a 64-bit float type"); auto *Ty = FixedVectorType::get(ElementType, Elts.size()); const char *Data = reinterpret_cast(Elts.data()); return getImpl(StringRef(Data, Elts.size() * 8), Ty); } Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) { assert(isElementTypeCompatible(V->getType()) && "Element type not compatible with ConstantData"); if (ConstantInt *CI = dyn_cast(V)) { if (CI->getType()->isIntegerTy(8)) { SmallVector Elts(NumElts, CI->getZExtValue()); return get(V->getContext(), Elts); } if (CI->getType()->isIntegerTy(16)) { SmallVector Elts(NumElts, CI->getZExtValue()); return get(V->getContext(), Elts); } if (CI->getType()->isIntegerTy(32)) { SmallVector Elts(NumElts, CI->getZExtValue()); return get(V->getContext(), Elts); } assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type"); SmallVector Elts(NumElts, CI->getZExtValue()); return get(V->getContext(), Elts); } if (ConstantFP *CFP = dyn_cast(V)) { if (CFP->getType()->isHalfTy()) { SmallVector Elts( NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); return getFP(V->getType(), Elts); } if (CFP->getType()->isBFloatTy()) { SmallVector Elts( NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); return getFP(V->getType(), Elts); } if (CFP->getType()->isFloatTy()) { SmallVector Elts( NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); return getFP(V->getType(), Elts); } if (CFP->getType()->isDoubleTy()) { SmallVector Elts( NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); return getFP(V->getType(), Elts); } } return ConstantVector::getSplat(ElementCount::getFixed(NumElts), V); } uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const { assert(isa(getElementType()) && "Accessor can only be used when element is an integer"); const char *EltPtr = getElementPointer(Elt); // The data is stored in host byte order, make sure to cast back to the right // type to load with the right endianness. switch (getElementType()->getIntegerBitWidth()) { default: llvm_unreachable("Invalid bitwidth for CDS"); case 8: return *reinterpret_cast(EltPtr); case 16: return *reinterpret_cast(EltPtr); case 32: return *reinterpret_cast(EltPtr); case 64: return *reinterpret_cast(EltPtr); } } APInt ConstantDataSequential::getElementAsAPInt(unsigned Elt) const { assert(isa(getElementType()) && "Accessor can only be used when element is an integer"); const char *EltPtr = getElementPointer(Elt); // The data is stored in host byte order, make sure to cast back to the right // type to load with the right endianness. switch (getElementType()->getIntegerBitWidth()) { default: llvm_unreachable("Invalid bitwidth for CDS"); case 8: { auto EltVal = *reinterpret_cast(EltPtr); return APInt(8, EltVal); } case 16: { auto EltVal = *reinterpret_cast(EltPtr); return APInt(16, EltVal); } case 32: { auto EltVal = *reinterpret_cast(EltPtr); return APInt(32, EltVal); } case 64: { auto EltVal = *reinterpret_cast(EltPtr); return APInt(64, EltVal); } } } APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const { const char *EltPtr = getElementPointer(Elt); switch (getElementType()->getTypeID()) { default: llvm_unreachable("Accessor can only be used when element is float/double!"); case Type::HalfTyID: { auto EltVal = *reinterpret_cast(EltPtr); return APFloat(APFloat::IEEEhalf(), APInt(16, EltVal)); } case Type::BFloatTyID: { auto EltVal = *reinterpret_cast(EltPtr); return APFloat(APFloat::BFloat(), APInt(16, EltVal)); } case Type::FloatTyID: { auto EltVal = *reinterpret_cast(EltPtr); return APFloat(APFloat::IEEEsingle(), APInt(32, EltVal)); } case Type::DoubleTyID: { auto EltVal = *reinterpret_cast(EltPtr); return APFloat(APFloat::IEEEdouble(), APInt(64, EltVal)); } } } float ConstantDataSequential::getElementAsFloat(unsigned Elt) const { assert(getElementType()->isFloatTy() && "Accessor can only be used when element is a 'float'"); return *reinterpret_cast(getElementPointer(Elt)); } double ConstantDataSequential::getElementAsDouble(unsigned Elt) const { assert(getElementType()->isDoubleTy() && "Accessor can only be used when element is a 'float'"); return *reinterpret_cast(getElementPointer(Elt)); } Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const { if (getElementType()->isHalfTy() || getElementType()->isBFloatTy() || getElementType()->isFloatTy() || getElementType()->isDoubleTy()) return ConstantFP::get(getContext(), getElementAsAPFloat(Elt)); return ConstantInt::get(getElementType(), getElementAsInteger(Elt)); } bool ConstantDataSequential::isString(unsigned CharSize) const { return isa(getType()) && getElementType()->isIntegerTy(CharSize); } bool ConstantDataSequential::isCString() const { if (!isString()) return false; StringRef Str = getAsString(); // The last value must be nul. if (Str.back() != 0) return false; // Other elements must be non-nul. return Str.drop_back().find(0) == StringRef::npos; } bool ConstantDataVector::isSplatData() const { const char *Base = getRawDataValues().data(); // Compare elements 1+ to the 0'th element. unsigned EltSize = getElementByteSize(); for (unsigned i = 1, e = getNumElements(); i != e; ++i) if (memcmp(Base, Base+i*EltSize, EltSize)) return false; return true; } bool ConstantDataVector::isSplat() const { if (!IsSplatSet) { IsSplatSet = true; IsSplat = isSplatData(); } return IsSplat; } Constant *ConstantDataVector::getSplatValue() const { // If they're all the same, return the 0th one as a representative. return isSplat() ? getElementAsConstant(0) : nullptr; } //===----------------------------------------------------------------------===// // handleOperandChange implementations /// Update this constant array to change uses of /// 'From' to be uses of 'To'. This must update the uniquing data structures /// etc. /// /// Note that we intentionally replace all uses of From with To here. Consider /// a large array that uses 'From' 1000 times. By handling this case all here, /// ConstantArray::handleOperandChange is only invoked once, and that /// single invocation handles all 1000 uses. Handling them one at a time would /// work, but would be really slow because it would have to unique each updated /// array instance. /// void Constant::handleOperandChange(Value *From, Value *To) { Value *Replacement = nullptr; switch (getValueID()) { default: llvm_unreachable("Not a constant!"); #define HANDLE_CONSTANT(Name) \ case Value::Name##Val: \ Replacement = cast(this)->handleOperandChangeImpl(From, To); \ break; #include "llvm/IR/Value.def" } // If handleOperandChangeImpl returned nullptr, then it handled // replacing itself and we don't want to delete or replace anything else here. if (!Replacement) return; // I do need to replace this with an existing value. assert(Replacement != this && "I didn't contain From!"); // Everyone using this now uses the replacement. replaceAllUsesWith(Replacement); // Delete the old constant! destroyConstant(); } Value *ConstantArray::handleOperandChangeImpl(Value *From, Value *To) { assert(isa(To) && "Cannot make Constant refer to non-constant!"); Constant *ToC = cast(To); SmallVector Values; Values.reserve(getNumOperands()); // Build replacement array. // Fill values with the modified operands of the constant array. Also, // compute whether this turns into an all-zeros array. unsigned NumUpdated = 0; // Keep track of whether all the values in the array are "ToC". bool AllSame = true; Use *OperandList = getOperandList(); unsigned OperandNo = 0; for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { Constant *Val = cast(O->get()); if (Val == From) { OperandNo = (O - OperandList); Val = ToC; ++NumUpdated; } Values.push_back(Val); AllSame &= Val == ToC; } if (AllSame && ToC->isNullValue()) return ConstantAggregateZero::get(getType()); if (AllSame && isa(ToC)) return UndefValue::get(getType()); // Check for any other type of constant-folding. if (Constant *C = getImpl(getType(), Values)) return C; // Update to the new value. return getContext().pImpl->ArrayConstants.replaceOperandsInPlace( Values, this, From, ToC, NumUpdated, OperandNo); } Value *ConstantStruct::handleOperandChangeImpl(Value *From, Value *To) { assert(isa(To) && "Cannot make Constant refer to non-constant!"); Constant *ToC = cast(To); Use *OperandList = getOperandList(); SmallVector Values; Values.reserve(getNumOperands()); // Build replacement struct. // Fill values with the modified operands of the constant struct. Also, // compute whether this turns into an all-zeros struct. unsigned NumUpdated = 0; bool AllSame = true; unsigned OperandNo = 0; for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O) { Constant *Val = cast(O->get()); if (Val == From) { OperandNo = (O - OperandList); Val = ToC; ++NumUpdated; } Values.push_back(Val); AllSame &= Val == ToC; } if (AllSame && ToC->isNullValue()) return ConstantAggregateZero::get(getType()); if (AllSame && isa(ToC)) return UndefValue::get(getType()); // Update to the new value. return getContext().pImpl->StructConstants.replaceOperandsInPlace( Values, this, From, ToC, NumUpdated, OperandNo); } Value *ConstantVector::handleOperandChangeImpl(Value *From, Value *To) { assert(isa(To) && "Cannot make Constant refer to non-constant!"); Constant *ToC = cast(To); SmallVector Values; Values.reserve(getNumOperands()); // Build replacement array... unsigned NumUpdated = 0; unsigned OperandNo = 0; for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { Constant *Val = getOperand(i); if (Val == From) { OperandNo = i; ++NumUpdated; Val = ToC; } Values.push_back(Val); } if (Constant *C = getImpl(Values)) return C; // Update to the new value. return getContext().pImpl->VectorConstants.replaceOperandsInPlace( Values, this, From, ToC, NumUpdated, OperandNo); } Value *ConstantExpr::handleOperandChangeImpl(Value *From, Value *ToV) { assert(isa(ToV) && "Cannot make Constant refer to non-constant!"); Constant *To = cast(ToV); SmallVector NewOps; unsigned NumUpdated = 0; unsigned OperandNo = 0; for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { Constant *Op = getOperand(i); if (Op == From) { OperandNo = i; ++NumUpdated; Op = To; } NewOps.push_back(Op); } assert(NumUpdated && "I didn't contain From!"); if (Constant *C = getWithOperands(NewOps, getType(), true)) return C; // Update to the new value. return getContext().pImpl->ExprConstants.replaceOperandsInPlace( NewOps, this, From, To, NumUpdated, OperandNo); } Instruction *ConstantExpr::getAsInstruction() const { SmallVector ValueOperands(op_begin(), op_end()); ArrayRef Ops(ValueOperands); switch (getOpcode()) { case Instruction::Trunc: case Instruction::ZExt: case Instruction::SExt: case Instruction::FPTrunc: case Instruction::FPExt: case Instruction::UIToFP: case Instruction::SIToFP: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::PtrToInt: case Instruction::IntToPtr: case Instruction::BitCast: case Instruction::AddrSpaceCast: return CastInst::Create((Instruction::CastOps)getOpcode(), Ops[0], getType()); case Instruction::Select: return SelectInst::Create(Ops[0], Ops[1], Ops[2]); case Instruction::InsertElement: return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]); case Instruction::ExtractElement: return ExtractElementInst::Create(Ops[0], Ops[1]); case Instruction::InsertValue: return InsertValueInst::Create(Ops[0], Ops[1], getIndices()); case Instruction::ExtractValue: return ExtractValueInst::Create(Ops[0], getIndices()); case Instruction::ShuffleVector: return new ShuffleVectorInst(Ops[0], Ops[1], getShuffleMask()); case Instruction::GetElementPtr: { const auto *GO = cast(this); if (GO->isInBounds()) return GetElementPtrInst::CreateInBounds(GO->getSourceElementType(), Ops[0], Ops.slice(1)); return GetElementPtrInst::Create(GO->getSourceElementType(), Ops[0], Ops.slice(1)); } case Instruction::ICmp: case Instruction::FCmp: return CmpInst::Create((Instruction::OtherOps)getOpcode(), (CmpInst::Predicate)getPredicate(), Ops[0], Ops[1]); case Instruction::FNeg: return UnaryOperator::Create((Instruction::UnaryOps)getOpcode(), Ops[0]); default: assert(getNumOperands() == 2 && "Must be binary operator?"); BinaryOperator *BO = BinaryOperator::Create((Instruction::BinaryOps)getOpcode(), Ops[0], Ops[1]); if (isa(BO)) { BO->setHasNoUnsignedWrap(SubclassOptionalData & OverflowingBinaryOperator::NoUnsignedWrap); BO->setHasNoSignedWrap(SubclassOptionalData & OverflowingBinaryOperator::NoSignedWrap); } if (isa(BO)) BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact); return BO; } }