//===-- X86TargetParser - Parser for X86 features ---------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements a target parser to recognise X86 hardware features. // //===----------------------------------------------------------------------===// #include "llvm/Support/X86TargetParser.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/ADT/Triple.h" using namespace llvm; using namespace llvm::X86; namespace { /// Container class for CPU features. /// This is a constexpr reimplementation of a subset of std::bitset. It would be /// nice to use std::bitset directly, but it doesn't support constant /// initialization. class FeatureBitset { static constexpr unsigned NUM_FEATURE_WORDS = (X86::CPU_FEATURE_MAX + 31) / 32; // This cannot be a std::array, operator[] is not constexpr until C++17. uint32_t Bits[NUM_FEATURE_WORDS] = {}; public: constexpr FeatureBitset() = default; constexpr FeatureBitset(std::initializer_list Init) { for (auto I : Init) set(I); } bool any() const { return llvm::any_of(Bits, [](uint64_t V) { return V != 0; }); } constexpr FeatureBitset &set(unsigned I) { // GCC <6.2 crashes if this is written in a single statement. uint32_t NewBits = Bits[I / 32] | (uint32_t(1) << (I % 32)); Bits[I / 32] = NewBits; return *this; } constexpr bool operator[](unsigned I) const { uint32_t Mask = uint32_t(1) << (I % 32); return (Bits[I / 32] & Mask) != 0; } constexpr FeatureBitset &operator&=(const FeatureBitset &RHS) { for (unsigned I = 0, E = array_lengthof(Bits); I != E; ++I) { // GCC <6.2 crashes if this is written in a single statement. uint32_t NewBits = Bits[I] & RHS.Bits[I]; Bits[I] = NewBits; } return *this; } constexpr FeatureBitset &operator|=(const FeatureBitset &RHS) { for (unsigned I = 0, E = array_lengthof(Bits); I != E; ++I) { // GCC <6.2 crashes if this is written in a single statement. uint32_t NewBits = Bits[I] | RHS.Bits[I]; Bits[I] = NewBits; } return *this; } // gcc 5.3 miscompiles this if we try to write this using operator&=. constexpr FeatureBitset operator&(const FeatureBitset &RHS) const { FeatureBitset Result; for (unsigned I = 0, E = array_lengthof(Bits); I != E; ++I) Result.Bits[I] = Bits[I] & RHS.Bits[I]; return Result; } // gcc 5.3 miscompiles this if we try to write this using operator&=. constexpr FeatureBitset operator|(const FeatureBitset &RHS) const { FeatureBitset Result; for (unsigned I = 0, E = array_lengthof(Bits); I != E; ++I) Result.Bits[I] = Bits[I] | RHS.Bits[I]; return Result; } constexpr FeatureBitset operator~() const { FeatureBitset Result; for (unsigned I = 0, E = array_lengthof(Bits); I != E; ++I) Result.Bits[I] = ~Bits[I]; return Result; } constexpr bool operator!=(const FeatureBitset &RHS) const { for (unsigned I = 0, E = array_lengthof(Bits); I != E; ++I) if (Bits[I] != RHS.Bits[I]) return true; return false; } }; struct ProcInfo { StringLiteral Name; X86::CPUKind Kind; unsigned KeyFeature; FeatureBitset Features; }; struct FeatureInfo { StringLiteral Name; FeatureBitset ImpliedFeatures; }; } // end anonymous namespace #define X86_FEATURE(ENUM, STRING) \ constexpr FeatureBitset Feature##ENUM = {X86::FEATURE_##ENUM}; #include "llvm/Support/X86TargetParser.def" // Pentium with MMX. constexpr FeatureBitset FeaturesPentiumMMX = FeatureX87 | FeatureCMPXCHG8B | FeatureMMX; // Pentium 2 and 3. constexpr FeatureBitset FeaturesPentium2 = FeatureX87 | FeatureCMPXCHG8B | FeatureMMX | FeatureFXSR; constexpr FeatureBitset FeaturesPentium3 = FeaturesPentium2 | FeatureSSE; // Pentium 4 CPUs constexpr FeatureBitset FeaturesPentium4 = FeaturesPentium3 | FeatureSSE2; constexpr FeatureBitset FeaturesPrescott = FeaturesPentium4 | FeatureSSE3; constexpr FeatureBitset FeaturesNocona = FeaturesPrescott | Feature64BIT | FeatureCMPXCHG16B; // Basic 64-bit capable CPU. constexpr FeatureBitset FeaturesX86_64 = FeaturesPentium4 | Feature64BIT; constexpr FeatureBitset FeaturesX86_64_V2 = FeaturesX86_64 | FeatureSAHF | FeaturePOPCNT | FeatureSSE4_2 | FeatureCMPXCHG16B; constexpr FeatureBitset FeaturesX86_64_V3 = FeaturesX86_64_V2 | FeatureAVX2 | FeatureBMI | FeatureBMI2 | FeatureF16C | FeatureFMA | FeatureLZCNT | FeatureMOVBE | FeatureXSAVE; constexpr FeatureBitset FeaturesX86_64_V4 = FeaturesX86_64_V3 | FeatureAVX512BW | FeatureAVX512CD | FeatureAVX512DQ | FeatureAVX512VL; // Intel Core CPUs constexpr FeatureBitset FeaturesCore2 = FeaturesNocona | FeatureSAHF | FeatureSSSE3; constexpr FeatureBitset FeaturesPenryn = FeaturesCore2 | FeatureSSE4_1; constexpr FeatureBitset FeaturesNehalem = FeaturesPenryn | FeaturePOPCNT | FeatureSSE4_2; constexpr FeatureBitset FeaturesWestmere = FeaturesNehalem | FeaturePCLMUL; constexpr FeatureBitset FeaturesSandyBridge = FeaturesWestmere | FeatureAVX | FeatureXSAVE | FeatureXSAVEOPT; constexpr FeatureBitset FeaturesIvyBridge = FeaturesSandyBridge | FeatureF16C | FeatureFSGSBASE | FeatureRDRND; constexpr FeatureBitset FeaturesHaswell = FeaturesIvyBridge | FeatureAVX2 | FeatureBMI | FeatureBMI2 | FeatureFMA | FeatureINVPCID | FeatureLZCNT | FeatureMOVBE; constexpr FeatureBitset FeaturesBroadwell = FeaturesHaswell | FeatureADX | FeaturePRFCHW | FeatureRDSEED; // Intel Knights Landing and Knights Mill // Knights Landing has feature parity with Broadwell. constexpr FeatureBitset FeaturesKNL = FeaturesBroadwell | FeatureAES | FeatureAVX512F | FeatureAVX512CD | FeatureAVX512ER | FeatureAVX512PF | FeaturePREFETCHWT1; constexpr FeatureBitset FeaturesKNM = FeaturesKNL | FeatureAVX512VPOPCNTDQ; // Intel Skylake processors. constexpr FeatureBitset FeaturesSkylakeClient = FeaturesBroadwell | FeatureAES | FeatureCLFLUSHOPT | FeatureXSAVEC | FeatureXSAVES | FeatureSGX; // SkylakeServer inherits all SkylakeClient features except SGX. // FIXME: That doesn't match gcc. constexpr FeatureBitset FeaturesSkylakeServer = (FeaturesSkylakeClient & ~FeatureSGX) | FeatureAVX512F | FeatureAVX512CD | FeatureAVX512DQ | FeatureAVX512BW | FeatureAVX512VL | FeatureCLWB | FeaturePKU; constexpr FeatureBitset FeaturesCascadeLake = FeaturesSkylakeServer | FeatureAVX512VNNI; constexpr FeatureBitset FeaturesCooperLake = FeaturesCascadeLake | FeatureAVX512BF16; // Intel 10nm processors. constexpr FeatureBitset FeaturesCannonlake = FeaturesSkylakeClient | FeatureAVX512F | FeatureAVX512CD | FeatureAVX512DQ | FeatureAVX512BW | FeatureAVX512VL | FeatureAVX512IFMA | FeatureAVX512VBMI | FeaturePKU | FeatureSHA; constexpr FeatureBitset FeaturesICLClient = FeaturesCannonlake | FeatureAVX512BITALG | FeatureAVX512VBMI2 | FeatureAVX512VNNI | FeatureAVX512VPOPCNTDQ | FeatureCLWB | FeatureGFNI | FeatureRDPID | FeatureVAES | FeatureVPCLMULQDQ; constexpr FeatureBitset FeaturesICLServer = FeaturesICLClient | FeaturePCONFIG | FeatureWBNOINVD; constexpr FeatureBitset FeaturesTigerlake = FeaturesICLClient | FeatureAVX512VP2INTERSECT | FeatureMOVDIR64B | FeatureMOVDIRI | FeatureSHSTK | FeatureKL | FeatureWIDEKL; constexpr FeatureBitset FeaturesSapphireRapids = FeaturesICLServer | FeatureAMX_TILE | FeatureAMX_INT8 | FeatureAMX_BF16 | FeatureAVX512BF16 | FeatureAVX512VP2INTERSECT | FeatureCLDEMOTE | FeatureENQCMD | FeatureMOVDIR64B | FeatureMOVDIRI | FeaturePTWRITE | FeatureSERIALIZE | FeatureSHSTK | FeatureTSXLDTRK | FeatureUINTR | FeatureWAITPKG | FeatureAVXVNNI; constexpr FeatureBitset FeaturesAlderlake = FeaturesSkylakeClient | FeatureCLDEMOTE | FeatureHRESET | FeaturePTWRITE | FeatureSERIALIZE | FeatureWAITPKG | FeatureAVXVNNI; // Intel Atom processors. // Bonnell has feature parity with Core2 and adds MOVBE. constexpr FeatureBitset FeaturesBonnell = FeaturesCore2 | FeatureMOVBE; // Silvermont has parity with Westmere and Bonnell plus PRFCHW and RDRND. constexpr FeatureBitset FeaturesSilvermont = FeaturesBonnell | FeaturesWestmere | FeaturePRFCHW | FeatureRDRND; constexpr FeatureBitset FeaturesGoldmont = FeaturesSilvermont | FeatureAES | FeatureCLFLUSHOPT | FeatureFSGSBASE | FeatureRDSEED | FeatureSHA | FeatureXSAVE | FeatureXSAVEC | FeatureXSAVEOPT | FeatureXSAVES; constexpr FeatureBitset FeaturesGoldmontPlus = FeaturesGoldmont | FeaturePTWRITE | FeatureRDPID | FeatureSGX; constexpr FeatureBitset FeaturesTremont = FeaturesGoldmontPlus | FeatureCLWB | FeatureGFNI; // Geode Processor. constexpr FeatureBitset FeaturesGeode = FeatureX87 | FeatureCMPXCHG8B | FeatureMMX | Feature3DNOW | Feature3DNOWA; // K6 processor. constexpr FeatureBitset FeaturesK6 = FeatureX87 | FeatureCMPXCHG8B | FeatureMMX; // K7 and K8 architecture processors. constexpr FeatureBitset FeaturesAthlon = FeatureX87 | FeatureCMPXCHG8B | FeatureMMX | Feature3DNOW | Feature3DNOWA; constexpr FeatureBitset FeaturesAthlonXP = FeaturesAthlon | FeatureFXSR | FeatureSSE; constexpr FeatureBitset FeaturesK8 = FeaturesAthlonXP | FeatureSSE2 | Feature64BIT; constexpr FeatureBitset FeaturesK8SSE3 = FeaturesK8 | FeatureSSE3; constexpr FeatureBitset FeaturesAMDFAM10 = FeaturesK8SSE3 | FeatureCMPXCHG16B | FeatureLZCNT | FeaturePOPCNT | FeaturePRFCHW | FeatureSAHF | FeatureSSE4_A; // Bobcat architecture processors. constexpr FeatureBitset FeaturesBTVER1 = FeatureX87 | FeatureCMPXCHG8B | FeatureCMPXCHG16B | Feature64BIT | FeatureFXSR | FeatureLZCNT | FeatureMMX | FeaturePOPCNT | FeaturePRFCHW | FeatureSSE | FeatureSSE2 | FeatureSSE3 | FeatureSSSE3 | FeatureSSE4_A | FeatureSAHF; constexpr FeatureBitset FeaturesBTVER2 = FeaturesBTVER1 | FeatureAES | FeatureAVX | FeatureBMI | FeatureF16C | FeatureMOVBE | FeaturePCLMUL | FeatureXSAVE | FeatureXSAVEOPT; // AMD Bulldozer architecture processors. constexpr FeatureBitset FeaturesBDVER1 = FeatureX87 | FeatureAES | FeatureAVX | FeatureCMPXCHG8B | FeatureCMPXCHG16B | Feature64BIT | FeatureFMA4 | FeatureFXSR | FeatureLWP | FeatureLZCNT | FeatureMMX | FeaturePCLMUL | FeaturePOPCNT | FeaturePRFCHW | FeatureSAHF | FeatureSSE | FeatureSSE2 | FeatureSSE3 | FeatureSSSE3 | FeatureSSE4_1 | FeatureSSE4_2 | FeatureSSE4_A | FeatureXOP | FeatureXSAVE; constexpr FeatureBitset FeaturesBDVER2 = FeaturesBDVER1 | FeatureBMI | FeatureFMA | FeatureF16C | FeatureTBM; constexpr FeatureBitset FeaturesBDVER3 = FeaturesBDVER2 | FeatureFSGSBASE | FeatureXSAVEOPT; constexpr FeatureBitset FeaturesBDVER4 = FeaturesBDVER3 | FeatureAVX2 | FeatureBMI2 | FeatureMOVBE | FeatureMWAITX | FeatureRDRND; // AMD Zen architecture processors. constexpr FeatureBitset FeaturesZNVER1 = FeatureX87 | FeatureADX | FeatureAES | FeatureAVX | FeatureAVX2 | FeatureBMI | FeatureBMI2 | FeatureCLFLUSHOPT | FeatureCLZERO | FeatureCMPXCHG8B | FeatureCMPXCHG16B | Feature64BIT | FeatureF16C | FeatureFMA | FeatureFSGSBASE | FeatureFXSR | FeatureLZCNT | FeatureMMX | FeatureMOVBE | FeatureMWAITX | FeaturePCLMUL | FeaturePOPCNT | FeaturePRFCHW | FeatureRDRND | FeatureRDSEED | FeatureSAHF | FeatureSHA | FeatureSSE | FeatureSSE2 | FeatureSSE3 | FeatureSSSE3 | FeatureSSE4_1 | FeatureSSE4_2 | FeatureSSE4_A | FeatureXSAVE | FeatureXSAVEC | FeatureXSAVEOPT | FeatureXSAVES; constexpr FeatureBitset FeaturesZNVER2 = FeaturesZNVER1 | FeatureCLWB | FeatureRDPID | FeatureWBNOINVD; static constexpr FeatureBitset FeaturesZNVER3 = FeaturesZNVER2 | FeatureINVPCID | FeaturePKU | FeatureVAES | FeatureVPCLMULQDQ; constexpr ProcInfo Processors[] = { // Empty processor. Include X87 and CMPXCHG8 for backwards compatibility. { {""}, CK_None, ~0U, FeatureX87 | FeatureCMPXCHG8B }, // i386-generation processors. { {"i386"}, CK_i386, ~0U, FeatureX87 }, // i486-generation processors. { {"i486"}, CK_i486, ~0U, FeatureX87 }, { {"winchip-c6"}, CK_WinChipC6, ~0U, FeaturesPentiumMMX }, { {"winchip2"}, CK_WinChip2, ~0U, FeaturesPentiumMMX | Feature3DNOW }, { {"c3"}, CK_C3, ~0U, FeaturesPentiumMMX | Feature3DNOW }, // i586-generation processors, P5 microarchitecture based. { {"i586"}, CK_i586, ~0U, FeatureX87 | FeatureCMPXCHG8B }, { {"pentium"}, CK_Pentium, ~0U, FeatureX87 | FeatureCMPXCHG8B }, { {"pentium-mmx"}, CK_PentiumMMX, ~0U, FeaturesPentiumMMX }, // i686-generation processors, P6 / Pentium M microarchitecture based. { {"pentiumpro"}, CK_PentiumPro, ~0U, FeatureX87 | FeatureCMPXCHG8B }, { {"i686"}, CK_i686, ~0U, FeatureX87 | FeatureCMPXCHG8B }, { {"pentium2"}, CK_Pentium2, ~0U, FeaturesPentium2 }, { {"pentium3"}, CK_Pentium3, ~0U, FeaturesPentium3 }, { {"pentium3m"}, CK_Pentium3, ~0U, FeaturesPentium3 }, { {"pentium-m"}, CK_PentiumM, ~0U, FeaturesPentium4 }, { {"c3-2"}, CK_C3_2, ~0U, FeaturesPentium3 }, { {"yonah"}, CK_Yonah, ~0U, FeaturesPrescott }, // Netburst microarchitecture based processors. { {"pentium4"}, CK_Pentium4, ~0U, FeaturesPentium4 }, { {"pentium4m"}, CK_Pentium4, ~0U, FeaturesPentium4 }, { {"prescott"}, CK_Prescott, ~0U, FeaturesPrescott }, { {"nocona"}, CK_Nocona, ~0U, FeaturesNocona }, // Core microarchitecture based processors. { {"core2"}, CK_Core2, ~0U, FeaturesCore2 }, { {"penryn"}, CK_Penryn, ~0U, FeaturesPenryn }, // Atom processors { {"bonnell"}, CK_Bonnell, FEATURE_SSSE3, FeaturesBonnell }, { {"atom"}, CK_Bonnell, FEATURE_SSSE3, FeaturesBonnell }, { {"silvermont"}, CK_Silvermont, FEATURE_SSE4_2, FeaturesSilvermont }, { {"slm"}, CK_Silvermont, FEATURE_SSE4_2, FeaturesSilvermont }, { {"goldmont"}, CK_Goldmont, FEATURE_SSE4_2, FeaturesGoldmont }, { {"goldmont-plus"}, CK_GoldmontPlus, FEATURE_SSE4_2, FeaturesGoldmontPlus }, { {"tremont"}, CK_Tremont, FEATURE_SSE4_2, FeaturesTremont }, // Nehalem microarchitecture based processors. { {"nehalem"}, CK_Nehalem, FEATURE_SSE4_2, FeaturesNehalem }, { {"corei7"}, CK_Nehalem, FEATURE_SSE4_2, FeaturesNehalem }, // Westmere microarchitecture based processors. { {"westmere"}, CK_Westmere, FEATURE_PCLMUL, FeaturesWestmere }, // Sandy Bridge microarchitecture based processors. { {"sandybridge"}, CK_SandyBridge, FEATURE_AVX, FeaturesSandyBridge }, { {"corei7-avx"}, CK_SandyBridge, FEATURE_AVX, FeaturesSandyBridge }, // Ivy Bridge microarchitecture based processors. { {"ivybridge"}, CK_IvyBridge, FEATURE_AVX, FeaturesIvyBridge }, { {"core-avx-i"}, CK_IvyBridge, FEATURE_AVX, FeaturesIvyBridge }, // Haswell microarchitecture based processors. { {"haswell"}, CK_Haswell, FEATURE_AVX2, FeaturesHaswell }, { {"core-avx2"}, CK_Haswell, FEATURE_AVX2, FeaturesHaswell }, // Broadwell microarchitecture based processors. { {"broadwell"}, CK_Broadwell, FEATURE_AVX2, FeaturesBroadwell }, // Skylake client microarchitecture based processors. { {"skylake"}, CK_SkylakeClient, FEATURE_AVX2, FeaturesSkylakeClient }, // Skylake server microarchitecture based processors. { {"skylake-avx512"}, CK_SkylakeServer, FEATURE_AVX512F, FeaturesSkylakeServer }, { {"skx"}, CK_SkylakeServer, FEATURE_AVX512F, FeaturesSkylakeServer }, // Cascadelake Server microarchitecture based processors. { {"cascadelake"}, CK_Cascadelake, FEATURE_AVX512VNNI, FeaturesCascadeLake }, // Cooperlake Server microarchitecture based processors. { {"cooperlake"}, CK_Cooperlake, FEATURE_AVX512BF16, FeaturesCooperLake }, // Cannonlake client microarchitecture based processors. { {"cannonlake"}, CK_Cannonlake, FEATURE_AVX512VBMI, FeaturesCannonlake }, // Icelake client microarchitecture based processors. { {"icelake-client"}, CK_IcelakeClient, FEATURE_AVX512VBMI2, FeaturesICLClient }, // Icelake server microarchitecture based processors. { {"icelake-server"}, CK_IcelakeServer, FEATURE_AVX512VBMI2, FeaturesICLServer }, // Tigerlake microarchitecture based processors. { {"tigerlake"}, CK_Tigerlake, FEATURE_AVX512VP2INTERSECT, FeaturesTigerlake }, // Sapphire Rapids microarchitecture based processors. { {"sapphirerapids"}, CK_SapphireRapids, FEATURE_AVX512VP2INTERSECT, FeaturesSapphireRapids }, // Alderlake microarchitecture based processors. { {"alderlake"}, CK_Alderlake, FEATURE_AVX2, FeaturesAlderlake }, // Knights Landing processor. { {"knl"}, CK_KNL, FEATURE_AVX512F, FeaturesKNL }, // Knights Mill processor. { {"knm"}, CK_KNM, FEATURE_AVX5124FMAPS, FeaturesKNM }, // Lakemont microarchitecture based processors. { {"lakemont"}, CK_Lakemont, ~0U, FeatureCMPXCHG8B }, // K6 architecture processors. { {"k6"}, CK_K6, ~0U, FeaturesK6 }, { {"k6-2"}, CK_K6_2, ~0U, FeaturesK6 | Feature3DNOW }, { {"k6-3"}, CK_K6_3, ~0U, FeaturesK6 | Feature3DNOW }, // K7 architecture processors. { {"athlon"}, CK_Athlon, ~0U, FeaturesAthlon }, { {"athlon-tbird"}, CK_Athlon, ~0U, FeaturesAthlon }, { {"athlon-xp"}, CK_AthlonXP, ~0U, FeaturesAthlonXP }, { {"athlon-mp"}, CK_AthlonXP, ~0U, FeaturesAthlonXP }, { {"athlon-4"}, CK_AthlonXP, ~0U, FeaturesAthlonXP }, // K8 architecture processors. { {"k8"}, CK_K8, ~0U, FeaturesK8 }, { {"athlon64"}, CK_K8, ~0U, FeaturesK8 }, { {"athlon-fx"}, CK_K8, ~0U, FeaturesK8 }, { {"opteron"}, CK_K8, ~0U, FeaturesK8 }, { {"k8-sse3"}, CK_K8SSE3, ~0U, FeaturesK8SSE3 }, { {"athlon64-sse3"}, CK_K8SSE3, ~0U, FeaturesK8SSE3 }, { {"opteron-sse3"}, CK_K8SSE3, ~0U, FeaturesK8SSE3 }, { {"amdfam10"}, CK_AMDFAM10, FEATURE_SSE4_A, FeaturesAMDFAM10 }, { {"barcelona"}, CK_AMDFAM10, FEATURE_SSE4_A, FeaturesAMDFAM10 }, // Bobcat architecture processors. { {"btver1"}, CK_BTVER1, FEATURE_SSE4_A, FeaturesBTVER1 }, { {"btver2"}, CK_BTVER2, FEATURE_BMI, FeaturesBTVER2 }, // Bulldozer architecture processors. { {"bdver1"}, CK_BDVER1, FEATURE_XOP, FeaturesBDVER1 }, { {"bdver2"}, CK_BDVER2, FEATURE_FMA, FeaturesBDVER2 }, { {"bdver3"}, CK_BDVER3, FEATURE_FMA, FeaturesBDVER3 }, { {"bdver4"}, CK_BDVER4, FEATURE_AVX2, FeaturesBDVER4 }, // Zen architecture processors. { {"znver1"}, CK_ZNVER1, FEATURE_AVX2, FeaturesZNVER1 }, { {"znver2"}, CK_ZNVER2, FEATURE_AVX2, FeaturesZNVER2 }, { {"znver3"}, CK_ZNVER3, FEATURE_AVX2, FeaturesZNVER3 }, // Generic 64-bit processor. { {"x86-64"}, CK_x86_64, ~0U, FeaturesX86_64 }, { {"x86-64-v2"}, CK_x86_64_v2, ~0U, FeaturesX86_64_V2 }, { {"x86-64-v3"}, CK_x86_64_v3, ~0U, FeaturesX86_64_V3 }, { {"x86-64-v4"}, CK_x86_64_v4, ~0U, FeaturesX86_64_V4 }, // Geode processors. { {"geode"}, CK_Geode, ~0U, FeaturesGeode }, }; constexpr const char *NoTuneList[] = {"x86-64-v2", "x86-64-v3", "x86-64-v4"}; X86::CPUKind llvm::X86::parseArchX86(StringRef CPU, bool Only64Bit) { for (const auto &P : Processors) if (P.Name == CPU && (P.Features[FEATURE_64BIT] || !Only64Bit)) return P.Kind; return CK_None; } X86::CPUKind llvm::X86::parseTuneCPU(StringRef CPU, bool Only64Bit) { if (llvm::is_contained(NoTuneList, CPU)) return CK_None; return parseArchX86(CPU, Only64Bit); } void llvm::X86::fillValidCPUArchList(SmallVectorImpl &Values, bool Only64Bit) { for (const auto &P : Processors) if (!P.Name.empty() && (P.Features[FEATURE_64BIT] || !Only64Bit)) Values.emplace_back(P.Name); } void llvm::X86::fillValidTuneCPUList(SmallVectorImpl &Values, bool Only64Bit) { for (const ProcInfo &P : Processors) if (!P.Name.empty() && (P.Features[FEATURE_64BIT] || !Only64Bit) && !llvm::is_contained(NoTuneList, P.Name)) Values.emplace_back(P.Name); } ProcessorFeatures llvm::X86::getKeyFeature(X86::CPUKind Kind) { // FIXME: Can we avoid a linear search here? The table might be sorted by // CPUKind so we could binary search? for (const auto &P : Processors) { if (P.Kind == Kind) { assert(P.KeyFeature != ~0U && "Processor does not have a key feature."); return static_cast(P.KeyFeature); } } llvm_unreachable("Unable to find CPU kind!"); } // Features with no dependencies. constexpr FeatureBitset ImpliedFeatures64BIT = {}; constexpr FeatureBitset ImpliedFeaturesADX = {}; constexpr FeatureBitset ImpliedFeaturesBMI = {}; constexpr FeatureBitset ImpliedFeaturesBMI2 = {}; constexpr FeatureBitset ImpliedFeaturesCLDEMOTE = {}; constexpr FeatureBitset ImpliedFeaturesCLFLUSHOPT = {}; constexpr FeatureBitset ImpliedFeaturesCLWB = {}; constexpr FeatureBitset ImpliedFeaturesCLZERO = {}; constexpr FeatureBitset ImpliedFeaturesCMOV = {}; constexpr FeatureBitset ImpliedFeaturesCMPXCHG16B = {}; constexpr FeatureBitset ImpliedFeaturesCMPXCHG8B = {}; constexpr FeatureBitset ImpliedFeaturesENQCMD = {}; constexpr FeatureBitset ImpliedFeaturesFSGSBASE = {}; constexpr FeatureBitset ImpliedFeaturesFXSR = {}; constexpr FeatureBitset ImpliedFeaturesINVPCID = {}; constexpr FeatureBitset ImpliedFeaturesLWP = {}; constexpr FeatureBitset ImpliedFeaturesLZCNT = {}; constexpr FeatureBitset ImpliedFeaturesMWAITX = {}; constexpr FeatureBitset ImpliedFeaturesMOVBE = {}; constexpr FeatureBitset ImpliedFeaturesMOVDIR64B = {}; constexpr FeatureBitset ImpliedFeaturesMOVDIRI = {}; constexpr FeatureBitset ImpliedFeaturesPCONFIG = {}; constexpr FeatureBitset ImpliedFeaturesPOPCNT = {}; constexpr FeatureBitset ImpliedFeaturesPKU = {}; constexpr FeatureBitset ImpliedFeaturesPREFETCHWT1 = {}; constexpr FeatureBitset ImpliedFeaturesPRFCHW = {}; constexpr FeatureBitset ImpliedFeaturesPTWRITE = {}; constexpr FeatureBitset ImpliedFeaturesRDPID = {}; constexpr FeatureBitset ImpliedFeaturesRDRND = {}; constexpr FeatureBitset ImpliedFeaturesRDSEED = {}; constexpr FeatureBitset ImpliedFeaturesRTM = {}; constexpr FeatureBitset ImpliedFeaturesSAHF = {}; constexpr FeatureBitset ImpliedFeaturesSERIALIZE = {}; constexpr FeatureBitset ImpliedFeaturesSGX = {}; constexpr FeatureBitset ImpliedFeaturesSHSTK = {}; constexpr FeatureBitset ImpliedFeaturesTBM = {}; constexpr FeatureBitset ImpliedFeaturesTSXLDTRK = {}; constexpr FeatureBitset ImpliedFeaturesUINTR = {}; constexpr FeatureBitset ImpliedFeaturesWAITPKG = {}; constexpr FeatureBitset ImpliedFeaturesWBNOINVD = {}; constexpr FeatureBitset ImpliedFeaturesVZEROUPPER = {}; constexpr FeatureBitset ImpliedFeaturesX87 = {}; constexpr FeatureBitset ImpliedFeaturesXSAVE = {}; // Not really CPU features, but need to be in the table because clang uses // target features to communicate them to the backend. constexpr FeatureBitset ImpliedFeaturesRETPOLINE_EXTERNAL_THUNK = {}; constexpr FeatureBitset ImpliedFeaturesRETPOLINE_INDIRECT_BRANCHES = {}; constexpr FeatureBitset ImpliedFeaturesRETPOLINE_INDIRECT_CALLS = {}; constexpr FeatureBitset ImpliedFeaturesLVI_CFI = {}; constexpr FeatureBitset ImpliedFeaturesLVI_LOAD_HARDENING = {}; // XSAVE features are dependent on basic XSAVE. constexpr FeatureBitset ImpliedFeaturesXSAVEC = FeatureXSAVE; constexpr FeatureBitset ImpliedFeaturesXSAVEOPT = FeatureXSAVE; constexpr FeatureBitset ImpliedFeaturesXSAVES = FeatureXSAVE; // MMX->3DNOW->3DNOWA chain. constexpr FeatureBitset ImpliedFeaturesMMX = {}; constexpr FeatureBitset ImpliedFeatures3DNOW = FeatureMMX; constexpr FeatureBitset ImpliedFeatures3DNOWA = Feature3DNOW; // SSE/AVX/AVX512F chain. constexpr FeatureBitset ImpliedFeaturesSSE = {}; constexpr FeatureBitset ImpliedFeaturesSSE2 = FeatureSSE; constexpr FeatureBitset ImpliedFeaturesSSE3 = FeatureSSE2; constexpr FeatureBitset ImpliedFeaturesSSSE3 = FeatureSSE3; constexpr FeatureBitset ImpliedFeaturesSSE4_1 = FeatureSSSE3; constexpr FeatureBitset ImpliedFeaturesSSE4_2 = FeatureSSE4_1; constexpr FeatureBitset ImpliedFeaturesAVX = FeatureSSE4_2; constexpr FeatureBitset ImpliedFeaturesAVX2 = FeatureAVX; constexpr FeatureBitset ImpliedFeaturesAVX512F = FeatureAVX2 | FeatureF16C | FeatureFMA; // Vector extensions that build on SSE or AVX. constexpr FeatureBitset ImpliedFeaturesAES = FeatureSSE2; constexpr FeatureBitset ImpliedFeaturesF16C = FeatureAVX; constexpr FeatureBitset ImpliedFeaturesFMA = FeatureAVX; constexpr FeatureBitset ImpliedFeaturesGFNI = FeatureSSE2; constexpr FeatureBitset ImpliedFeaturesPCLMUL = FeatureSSE2; constexpr FeatureBitset ImpliedFeaturesSHA = FeatureSSE2; constexpr FeatureBitset ImpliedFeaturesVAES = FeatureAES | FeatureAVX; constexpr FeatureBitset ImpliedFeaturesVPCLMULQDQ = FeatureAVX | FeaturePCLMUL; // AVX512 features. constexpr FeatureBitset ImpliedFeaturesAVX512CD = FeatureAVX512F; constexpr FeatureBitset ImpliedFeaturesAVX512BW = FeatureAVX512F; constexpr FeatureBitset ImpliedFeaturesAVX512DQ = FeatureAVX512F; constexpr FeatureBitset ImpliedFeaturesAVX512ER = FeatureAVX512F; constexpr FeatureBitset ImpliedFeaturesAVX512PF = FeatureAVX512F; constexpr FeatureBitset ImpliedFeaturesAVX512VL = FeatureAVX512F; constexpr FeatureBitset ImpliedFeaturesAVX512BF16 = FeatureAVX512BW; constexpr FeatureBitset ImpliedFeaturesAVX512BITALG = FeatureAVX512BW; constexpr FeatureBitset ImpliedFeaturesAVX512IFMA = FeatureAVX512F; constexpr FeatureBitset ImpliedFeaturesAVX512VNNI = FeatureAVX512F; constexpr FeatureBitset ImpliedFeaturesAVX512VPOPCNTDQ = FeatureAVX512F; constexpr FeatureBitset ImpliedFeaturesAVX512VBMI = FeatureAVX512BW; constexpr FeatureBitset ImpliedFeaturesAVX512VBMI2 = FeatureAVX512BW; constexpr FeatureBitset ImpliedFeaturesAVX512VP2INTERSECT = FeatureAVX512F; // FIXME: These two aren't really implemented and just exist in the feature // list for __builtin_cpu_supports. So omit their dependencies. constexpr FeatureBitset ImpliedFeaturesAVX5124FMAPS = {}; constexpr FeatureBitset ImpliedFeaturesAVX5124VNNIW = {}; // SSE4_A->FMA4->XOP chain. constexpr FeatureBitset ImpliedFeaturesSSE4_A = FeatureSSE3; constexpr FeatureBitset ImpliedFeaturesFMA4 = FeatureAVX | FeatureSSE4_A; constexpr FeatureBitset ImpliedFeaturesXOP = FeatureFMA4; // AMX Features constexpr FeatureBitset ImpliedFeaturesAMX_TILE = {}; constexpr FeatureBitset ImpliedFeaturesAMX_BF16 = FeatureAMX_TILE; constexpr FeatureBitset ImpliedFeaturesAMX_INT8 = FeatureAMX_TILE; constexpr FeatureBitset ImpliedFeaturesHRESET = {}; // Key Locker Features constexpr FeatureBitset ImpliedFeaturesKL = FeatureSSE2; constexpr FeatureBitset ImpliedFeaturesWIDEKL = FeatureKL; // AVXVNNI Features constexpr FeatureBitset ImpliedFeaturesAVXVNNI = FeatureAVX2; constexpr FeatureInfo FeatureInfos[X86::CPU_FEATURE_MAX] = { #define X86_FEATURE(ENUM, STR) {{STR}, ImpliedFeatures##ENUM}, #include "llvm/Support/X86TargetParser.def" }; void llvm::X86::getFeaturesForCPU(StringRef CPU, SmallVectorImpl &EnabledFeatures) { auto I = llvm::find_if(Processors, [&](const ProcInfo &P) { return P.Name == CPU; }); assert(I != std::end(Processors) && "Processor not found!"); FeatureBitset Bits = I->Features; // Remove the 64-bit feature which we only use to validate if a CPU can // be used with 64-bit mode. Bits &= ~Feature64BIT; // Add the string version of all set bits. for (unsigned i = 0; i != CPU_FEATURE_MAX; ++i) if (Bits[i] && !FeatureInfos[i].Name.empty()) EnabledFeatures.push_back(FeatureInfos[i].Name); } // For each feature that is (transitively) implied by this feature, set it. static void getImpliedEnabledFeatures(FeatureBitset &Bits, const FeatureBitset &Implies) { // Fast path: Implies is often empty. if (!Implies.any()) return; FeatureBitset Prev; Bits |= Implies; do { Prev = Bits; for (unsigned i = CPU_FEATURE_MAX; i;) if (Bits[--i]) Bits |= FeatureInfos[i].ImpliedFeatures; } while (Prev != Bits); } /// Create bit vector of features that are implied disabled if the feature /// passed in Value is disabled. static void getImpliedDisabledFeatures(FeatureBitset &Bits, unsigned Value) { // Check all features looking for any dependent on this feature. If we find // one, mark it and recursively find any feature that depend on it. FeatureBitset Prev; Bits.set(Value); do { Prev = Bits; for (unsigned i = 0; i != CPU_FEATURE_MAX; ++i) if ((FeatureInfos[i].ImpliedFeatures & Bits).any()) Bits.set(i); } while (Prev != Bits); } void llvm::X86::updateImpliedFeatures( StringRef Feature, bool Enabled, StringMap &Features) { auto I = llvm::find_if( FeatureInfos, [&](const FeatureInfo &FI) { return FI.Name == Feature; }); if (I == std::end(FeatureInfos)) { // FIXME: This shouldn't happen, but may not have all features in the table // yet. return; } FeatureBitset ImpliedBits; if (Enabled) getImpliedEnabledFeatures(ImpliedBits, I->ImpliedFeatures); else getImpliedDisabledFeatures(ImpliedBits, std::distance(std::begin(FeatureInfos), I)); // Update the map entry for all implied features. for (unsigned i = 0; i != CPU_FEATURE_MAX; ++i) if (ImpliedBits[i] && !FeatureInfos[i].Name.empty()) Features[FeatureInfos[i].Name] = Enabled; }