//===- AArch64LegalizerInfo.cpp ----------------------------------*- C++ -*-==// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// \file /// This file implements the targeting of the Machinelegalizer class for /// AArch64. /// \todo This should be generated by TableGen. //===----------------------------------------------------------------------===// #include "AArch64LegalizerInfo.h" #include "AArch64Subtarget.h" #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" #include "llvm/CodeGen/GlobalISel/Utils.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetOpcodes.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Type.h" #include #include "llvm/Support/MathExtras.h" #define DEBUG_TYPE "aarch64-legalinfo" using namespace llvm; using namespace LegalizeActions; using namespace LegalizeMutations; using namespace LegalityPredicates; AArch64LegalizerInfo::AArch64LegalizerInfo(const AArch64Subtarget &ST) : ST(&ST) { using namespace TargetOpcode; const LLT p0 = LLT::pointer(0, 64); const LLT s1 = LLT::scalar(1); const LLT s8 = LLT::scalar(8); const LLT s16 = LLT::scalar(16); const LLT s32 = LLT::scalar(32); const LLT s64 = LLT::scalar(64); const LLT s128 = LLT::scalar(128); const LLT s256 = LLT::scalar(256); const LLT s512 = LLT::scalar(512); const LLT v16s8 = LLT::vector(16, 8); const LLT v8s8 = LLT::vector(8, 8); const LLT v4s8 = LLT::vector(4, 8); const LLT v8s16 = LLT::vector(8, 16); const LLT v4s16 = LLT::vector(4, 16); const LLT v2s16 = LLT::vector(2, 16); const LLT v2s32 = LLT::vector(2, 32); const LLT v4s32 = LLT::vector(4, 32); const LLT v2s64 = LLT::vector(2, 64); const LLT v2p0 = LLT::vector(2, p0); std::initializer_list PackedVectorAllTypeList = {/* Begin 128bit types */ v16s8, v8s16, v4s32, v2s64, v2p0, /* End 128bit types */ /* Begin 64bit types */ v8s8, v4s16, v2s32}; const TargetMachine &TM = ST.getTargetLowering()->getTargetMachine(); // FIXME: support subtargets which have neon/fp-armv8 disabled. if (!ST.hasNEON() || !ST.hasFPARMv8()) { computeTables(); return; } // Some instructions only support s16 if the subtarget has full 16-bit FP // support. const bool HasFP16 = ST.hasFullFP16(); const LLT &MinFPScalar = HasFP16 ? s16 : s32; getActionDefinitionsBuilder({G_IMPLICIT_DEF, G_FREEZE}) .legalFor({p0, s1, s8, s16, s32, s64}) .legalFor(PackedVectorAllTypeList) .clampScalar(0, s1, s64) .widenScalarToNextPow2(0, 8) .fewerElementsIf( [=](const LegalityQuery &Query) { return Query.Types[0].isVector() && (Query.Types[0].getElementType() != s64 || Query.Types[0].getNumElements() != 2); }, [=](const LegalityQuery &Query) { LLT EltTy = Query.Types[0].getElementType(); if (EltTy == s64) return std::make_pair(0, LLT::vector(2, 64)); return std::make_pair(0, EltTy); }); getActionDefinitionsBuilder(G_PHI).legalFor({p0, s16, s32, s64}) .legalFor(PackedVectorAllTypeList) .clampScalar(0, s16, s64) .widenScalarToNextPow2(0); getActionDefinitionsBuilder(G_BSWAP) .legalFor({s32, s64, v4s32, v2s32, v2s64}) .clampScalar(0, s32, s64) .widenScalarToNextPow2(0); getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL, G_AND, G_OR, G_XOR}) .legalFor({s32, s64, v2s32, v4s32, v4s16, v8s16, v16s8, v8s8}) .scalarizeIf( [=](const LegalityQuery &Query) { return Query.Opcode == G_MUL && Query.Types[0] == v2s64; }, 0) .legalFor({v2s64}) .clampScalar(0, s32, s64) .widenScalarToNextPow2(0) .clampNumElements(0, v2s32, v4s32) .clampNumElements(0, v2s64, v2s64) .moreElementsToNextPow2(0); getActionDefinitionsBuilder({G_SHL, G_ASHR, G_LSHR}) .customIf([=](const LegalityQuery &Query) { const auto &SrcTy = Query.Types[0]; const auto &AmtTy = Query.Types[1]; return !SrcTy.isVector() && SrcTy.getSizeInBits() == 32 && AmtTy.getSizeInBits() == 32; }) .legalFor({ {s32, s32}, {s32, s64}, {s64, s64}, {v8s8, v8s8}, {v16s8, v16s8}, {v4s16, v4s16}, {v8s16, v8s16}, {v2s32, v2s32}, {v4s32, v4s32}, {v2s64, v2s64}, }) .clampScalar(1, s32, s64) .clampScalar(0, s32, s64) .widenScalarToNextPow2(0) .clampNumElements(0, v2s32, v4s32) .clampNumElements(0, v2s64, v2s64) .moreElementsToNextPow2(0) .minScalarSameAs(1, 0); getActionDefinitionsBuilder(G_PTR_ADD) .legalFor({{p0, s64}, {v2p0, v2s64}}) .clampScalar(1, s64, s64); getActionDefinitionsBuilder(G_PTRMASK).legalFor({{p0, s64}}); getActionDefinitionsBuilder({G_SDIV, G_UDIV}) .legalFor({s32, s64}) .libcallFor({s128}) .clampScalar(0, s32, s64) .widenScalarToNextPow2(0) .scalarize(0); getActionDefinitionsBuilder({G_SREM, G_UREM}) .lowerFor({s1, s8, s16, s32, s64}); getActionDefinitionsBuilder({G_SMULO, G_UMULO}).lowerFor({{s64, s1}}); getActionDefinitionsBuilder({G_SMULH, G_UMULH}).legalFor({s32, s64}); getActionDefinitionsBuilder({G_UADDE, G_USUBE, G_SADDO, G_SSUBO, G_UADDO}) .legalFor({{s32, s1}, {s64, s1}}) .minScalar(0, s32); getActionDefinitionsBuilder({G_FADD, G_FSUB, G_FMUL, G_FDIV, G_FNEG}) .legalFor({s32, s64, v2s64, v4s32, v2s32}) .clampNumElements(0, v2s32, v4s32) .clampNumElements(0, v2s64, v2s64); getActionDefinitionsBuilder(G_FREM).libcallFor({s32, s64}); getActionDefinitionsBuilder({G_FCEIL, G_FABS, G_FSQRT, G_FFLOOR, G_FRINT, G_FMA, G_INTRINSIC_TRUNC, G_INTRINSIC_ROUND, G_FNEARBYINT, G_INTRINSIC_LRINT}) // If we don't have full FP16 support, then scalarize the elements of // vectors containing fp16 types. .fewerElementsIf( [=, &ST](const LegalityQuery &Query) { const auto &Ty = Query.Types[0]; return Ty.isVector() && Ty.getElementType() == s16 && !ST.hasFullFP16(); }, [=](const LegalityQuery &Query) { return std::make_pair(0, s16); }) // If we don't have full FP16 support, then widen s16 to s32 if we // encounter it. .widenScalarIf( [=, &ST](const LegalityQuery &Query) { return Query.Types[0] == s16 && !ST.hasFullFP16(); }, [=](const LegalityQuery &Query) { return std::make_pair(0, s32); }) .legalFor({s16, s32, s64, v2s32, v4s32, v2s64, v2s16, v4s16, v8s16}); getActionDefinitionsBuilder( {G_FCOS, G_FSIN, G_FLOG10, G_FLOG, G_FLOG2, G_FEXP, G_FEXP2, G_FPOW}) // We need a call for these, so we always need to scalarize. .scalarize(0) // Regardless of FP16 support, widen 16-bit elements to 32-bits. .minScalar(0, s32) .libcallFor({s32, s64, v2s32, v4s32, v2s64}); getActionDefinitionsBuilder(G_INSERT) .unsupportedIf([=](const LegalityQuery &Query) { return Query.Types[0].getSizeInBits() <= Query.Types[1].getSizeInBits(); }) .legalIf([=](const LegalityQuery &Query) { const LLT &Ty0 = Query.Types[0]; const LLT &Ty1 = Query.Types[1]; if (Ty0 != s32 && Ty0 != s64 && Ty0 != p0) return false; return isPowerOf2_32(Ty1.getSizeInBits()) && (Ty1.getSizeInBits() == 1 || Ty1.getSizeInBits() >= 8); }) .clampScalar(0, s32, s64) .widenScalarToNextPow2(0) .maxScalarIf(typeInSet(0, {s32}), 1, s16) .maxScalarIf(typeInSet(0, {s64}), 1, s32) .widenScalarToNextPow2(1); getActionDefinitionsBuilder(G_EXTRACT) .unsupportedIf([=](const LegalityQuery &Query) { return Query.Types[0].getSizeInBits() >= Query.Types[1].getSizeInBits(); }) .legalIf([=](const LegalityQuery &Query) { const LLT &Ty0 = Query.Types[0]; const LLT &Ty1 = Query.Types[1]; if (Ty1 != s32 && Ty1 != s64 && Ty1 != s128) return false; if (Ty1 == p0) return true; return isPowerOf2_32(Ty0.getSizeInBits()) && (Ty0.getSizeInBits() == 1 || Ty0.getSizeInBits() >= 8); }) .clampScalar(1, s32, s128) .widenScalarToNextPow2(1) .maxScalarIf(typeInSet(1, {s32}), 0, s16) .maxScalarIf(typeInSet(1, {s64}), 0, s32) .widenScalarToNextPow2(0); getActionDefinitionsBuilder({G_SEXTLOAD, G_ZEXTLOAD}) .legalForTypesWithMemDesc({{s32, p0, 8, 8}, {s32, p0, 16, 8}, {s32, p0, 32, 8}, {s64, p0, 8, 2}, {s64, p0, 16, 2}, {s64, p0, 32, 4}, {s64, p0, 64, 8}, {p0, p0, 64, 8}, {v2s32, p0, 64, 8}}) .clampScalar(0, s32, s64) .widenScalarToNextPow2(0) // TODO: We could support sum-of-pow2's but the lowering code doesn't know // how to do that yet. .unsupportedIfMemSizeNotPow2() // Lower anything left over into G_*EXT and G_LOAD .lower(); auto IsPtrVecPred = [=](const LegalityQuery &Query) { const LLT &ValTy = Query.Types[0]; if (!ValTy.isVector()) return false; const LLT EltTy = ValTy.getElementType(); return EltTy.isPointer() && EltTy.getAddressSpace() == 0; }; getActionDefinitionsBuilder(G_LOAD) .legalForTypesWithMemDesc({{s8, p0, 8, 8}, {s16, p0, 16, 8}, {s32, p0, 32, 8}, {s64, p0, 64, 8}, {p0, p0, 64, 8}, {s128, p0, 128, 8}, {v8s8, p0, 64, 8}, {v16s8, p0, 128, 8}, {v4s16, p0, 64, 8}, {v8s16, p0, 128, 8}, {v2s32, p0, 64, 8}, {v4s32, p0, 128, 8}, {v2s64, p0, 128, 8}}) // These extends are also legal .legalForTypesWithMemDesc({{s32, p0, 8, 8}, {s32, p0, 16, 8}}) .clampScalar(0, s8, s64) .lowerIfMemSizeNotPow2() // Lower any any-extending loads left into G_ANYEXT and G_LOAD .lowerIf([=](const LegalityQuery &Query) { return Query.Types[0].getSizeInBits() != Query.MMODescrs[0].SizeInBits; }) .widenScalarToNextPow2(0) .clampMaxNumElements(0, s32, 2) .clampMaxNumElements(0, s64, 1) .customIf(IsPtrVecPred); getActionDefinitionsBuilder(G_STORE) .legalForTypesWithMemDesc({{s8, p0, 8, 8}, {s16, p0, 16, 8}, {s32, p0, 8, 8}, {s32, p0, 16, 8}, {s32, p0, 32, 8}, {s64, p0, 64, 8}, {p0, p0, 64, 8}, {s128, p0, 128, 8}, {v16s8, p0, 128, 8}, {v8s8, p0, 64, 8}, {v4s16, p0, 64, 8}, {v8s16, p0, 128, 8}, {v2s32, p0, 64, 8}, {v4s32, p0, 128, 8}, {v2s64, p0, 128, 8}}) .clampScalar(0, s8, s64) .lowerIfMemSizeNotPow2() .lowerIf([=](const LegalityQuery &Query) { return Query.Types[0].isScalar() && Query.Types[0].getSizeInBits() != Query.MMODescrs[0].SizeInBits; }) .clampMaxNumElements(0, s32, 2) .clampMaxNumElements(0, s64, 1) .customIf(IsPtrVecPred); // Constants getActionDefinitionsBuilder(G_CONSTANT) .legalFor({p0, s8, s16, s32, s64}) .clampScalar(0, s8, s64) .widenScalarToNextPow2(0); getActionDefinitionsBuilder(G_FCONSTANT) .legalIf([=](const LegalityQuery &Query) { const auto &Ty = Query.Types[0]; if (HasFP16 && Ty == s16) return true; return Ty == s32 || Ty == s64; }) .clampScalar(0, MinFPScalar, s64); getActionDefinitionsBuilder({G_ICMP, G_FCMP}) .legalFor({{s32, s32}, {s32, s64}, {s32, p0}, {v4s32, v4s32}, {v2s32, v2s32}, {v2s64, v2s64}, {v2s64, v2p0}, {v4s16, v4s16}, {v8s16, v8s16}, {v8s8, v8s8}, {v16s8, v16s8}}) .clampScalar(1, s32, s64) .clampScalar(0, s32, s32) .minScalarEltSameAsIf( [=](const LegalityQuery &Query) { const LLT &Ty = Query.Types[0]; const LLT &SrcTy = Query.Types[1]; return Ty.isVector() && !SrcTy.getElementType().isPointer() && Ty.getElementType() != SrcTy.getElementType(); }, 0, 1) .minScalarOrEltIf( [=](const LegalityQuery &Query) { return Query.Types[1] == v2s16; }, 1, s32) .minScalarOrEltIf( [=](const LegalityQuery &Query) { return Query.Types[1] == v2p0; }, 0, s64) .widenScalarOrEltToNextPow2(1) .clampNumElements(0, v2s32, v4s32); // Extensions auto ExtLegalFunc = [=](const LegalityQuery &Query) { unsigned DstSize = Query.Types[0].getSizeInBits(); if (DstSize == 128 && !Query.Types[0].isVector()) return false; // Extending to a scalar s128 needs narrowing. // Make sure that we have something that will fit in a register, and // make sure it's a power of 2. if (DstSize < 8 || DstSize > 128 || !isPowerOf2_32(DstSize)) return false; const LLT &SrcTy = Query.Types[1]; // Special case for s1. if (SrcTy == s1) return true; // Make sure we fit in a register otherwise. Don't bother checking that // the source type is below 128 bits. We shouldn't be allowing anything // through which is wider than the destination in the first place. unsigned SrcSize = SrcTy.getSizeInBits(); if (SrcSize < 8 || !isPowerOf2_32(SrcSize)) return false; return true; }; getActionDefinitionsBuilder({G_ZEXT, G_SEXT, G_ANYEXT}) .legalIf(ExtLegalFunc) .clampScalar(0, s64, s64); // Just for s128, others are handled above. getActionDefinitionsBuilder(G_TRUNC) .minScalarOrEltIf( [=](const LegalityQuery &Query) { return Query.Types[0].isVector(); }, 0, s8) .customIf([=](const LegalityQuery &Query) { LLT DstTy = Query.Types[0]; LLT SrcTy = Query.Types[1]; return DstTy == v8s8 && SrcTy.getSizeInBits() > 128; }) .alwaysLegal(); getActionDefinitionsBuilder(G_SEXT_INREG).legalFor({s32, s64}).lower(); // FP conversions getActionDefinitionsBuilder(G_FPTRUNC) .legalFor( {{s16, s32}, {s16, s64}, {s32, s64}, {v4s16, v4s32}, {v2s32, v2s64}}) .clampMaxNumElements(0, s32, 2); getActionDefinitionsBuilder(G_FPEXT) .legalFor( {{s32, s16}, {s64, s16}, {s64, s32}, {v4s32, v4s16}, {v2s64, v2s32}}) .clampMaxNumElements(0, s64, 2); // Conversions getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI}) .legalForCartesianProduct({s32, s64, v2s64, v4s32, v2s32}) .clampScalar(0, s32, s64) .widenScalarToNextPow2(0) .clampScalar(1, s32, s64) .widenScalarToNextPow2(1); getActionDefinitionsBuilder({G_SITOFP, G_UITOFP}) .legalForCartesianProduct({s32, s64, v2s64, v4s32, v2s32}) .clampScalar(1, s32, s64) .minScalarSameAs(1, 0) .clampScalar(0, s32, s64) .widenScalarToNextPow2(0); // Control-flow getActionDefinitionsBuilder(G_BRCOND).legalFor({s1, s8, s16, s32}); getActionDefinitionsBuilder(G_BRINDIRECT).legalFor({p0}); getActionDefinitionsBuilder(G_SELECT) .legalFor({{s32, s1}, {s64, s1}, {p0, s1}}) .clampScalar(0, s32, s64) .widenScalarToNextPow2(0) .minScalarEltSameAsIf(all(isVector(0), isVector(1)), 1, 0) .lowerIf(isVector(0)); // Pointer-handling getActionDefinitionsBuilder(G_FRAME_INDEX).legalFor({p0}); if (TM.getCodeModel() == CodeModel::Small) getActionDefinitionsBuilder(G_GLOBAL_VALUE).custom(); else getActionDefinitionsBuilder(G_GLOBAL_VALUE).legalFor({p0}); getActionDefinitionsBuilder(G_PTRTOINT) .legalForCartesianProduct({s1, s8, s16, s32, s64}, {p0}) .maxScalar(0, s64) .widenScalarToNextPow2(0, /*Min*/ 8); getActionDefinitionsBuilder(G_INTTOPTR) .unsupportedIf([&](const LegalityQuery &Query) { return Query.Types[0].getSizeInBits() != Query.Types[1].getSizeInBits(); }) .legalFor({{p0, s64}}); // Casts for 32 and 64-bit width type are just copies. // Same for 128-bit width type, except they are on the FPR bank. getActionDefinitionsBuilder(G_BITCAST) // FIXME: This is wrong since G_BITCAST is not allowed to change the // number of bits but it's what the previous code described and fixing // it breaks tests. .legalForCartesianProduct({s1, s8, s16, s32, s64, s128, v16s8, v8s8, v4s8, v8s16, v4s16, v2s16, v4s32, v2s32, v2s64, v2p0}); getActionDefinitionsBuilder(G_VASTART).legalFor({p0}); // va_list must be a pointer, but most sized types are pretty easy to handle // as the destination. getActionDefinitionsBuilder(G_VAARG) .customForCartesianProduct({s8, s16, s32, s64, p0}, {p0}) .clampScalar(0, s8, s64) .widenScalarToNextPow2(0, /*Min*/ 8); if (ST.hasLSE()) { getActionDefinitionsBuilder(G_ATOMIC_CMPXCHG_WITH_SUCCESS) .lowerIf(all( typeInSet(0, {s8, s16, s32, s64}), typeIs(1, s1), typeIs(2, p0), atomicOrderingAtLeastOrStrongerThan(0, AtomicOrdering::Monotonic))); getActionDefinitionsBuilder( {G_ATOMICRMW_XCHG, G_ATOMICRMW_ADD, G_ATOMICRMW_SUB, G_ATOMICRMW_AND, G_ATOMICRMW_OR, G_ATOMICRMW_XOR, G_ATOMICRMW_MIN, G_ATOMICRMW_MAX, G_ATOMICRMW_UMIN, G_ATOMICRMW_UMAX, G_ATOMIC_CMPXCHG}) .legalIf(all( typeInSet(0, {s8, s16, s32, s64}), typeIs(1, p0), atomicOrderingAtLeastOrStrongerThan(0, AtomicOrdering::Monotonic))); } getActionDefinitionsBuilder(G_BLOCK_ADDR).legalFor({p0}); // Merge/Unmerge for (unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) { unsigned BigTyIdx = Op == G_MERGE_VALUES ? 0 : 1; unsigned LitTyIdx = Op == G_MERGE_VALUES ? 1 : 0; auto notValidElt = [](const LegalityQuery &Query, unsigned TypeIdx) { const LLT &Ty = Query.Types[TypeIdx]; if (Ty.isVector()) { const LLT &EltTy = Ty.getElementType(); if (EltTy.getSizeInBits() < 8 || EltTy.getSizeInBits() > 64) return true; if (!isPowerOf2_32(EltTy.getSizeInBits())) return true; } return false; }; // FIXME: This rule is horrible, but specifies the same as what we had // before with the particularly strange definitions removed (e.g. // s8 = G_MERGE_VALUES s32, s32). // Part of the complexity comes from these ops being extremely flexible. For // example, you can build/decompose vectors with it, concatenate vectors, // etc. and in addition to this you can also bitcast with it at the same // time. We've been considering breaking it up into multiple ops to make it // more manageable throughout the backend. getActionDefinitionsBuilder(Op) // Break up vectors with weird elements into scalars .fewerElementsIf( [=](const LegalityQuery &Query) { return notValidElt(Query, 0); }, scalarize(0)) .fewerElementsIf( [=](const LegalityQuery &Query) { return notValidElt(Query, 1); }, scalarize(1)) // Clamp the big scalar to s8-s512 and make it either a power of 2, 192, // or 384. .clampScalar(BigTyIdx, s8, s512) .widenScalarIf( [=](const LegalityQuery &Query) { const LLT &Ty = Query.Types[BigTyIdx]; return !isPowerOf2_32(Ty.getSizeInBits()) && Ty.getSizeInBits() % 64 != 0; }, [=](const LegalityQuery &Query) { // Pick the next power of 2, or a multiple of 64 over 128. // Whichever is smaller. const LLT &Ty = Query.Types[BigTyIdx]; unsigned NewSizeInBits = 1 << Log2_32_Ceil(Ty.getSizeInBits() + 1); if (NewSizeInBits >= 256) { unsigned RoundedTo = alignTo<64>(Ty.getSizeInBits() + 1); if (RoundedTo < NewSizeInBits) NewSizeInBits = RoundedTo; } return std::make_pair(BigTyIdx, LLT::scalar(NewSizeInBits)); }) // Clamp the little scalar to s8-s256 and make it a power of 2. It's not // worth considering the multiples of 64 since 2*192 and 2*384 are not // valid. .clampScalar(LitTyIdx, s8, s256) .widenScalarToNextPow2(LitTyIdx, /*Min*/ 8) // So at this point, we have s8, s16, s32, s64, s128, s192, s256, s384, // s512, , , , or . // At this point it's simple enough to accept the legal types. .legalIf([=](const LegalityQuery &Query) { const LLT &BigTy = Query.Types[BigTyIdx]; const LLT &LitTy = Query.Types[LitTyIdx]; if (BigTy.isVector() && BigTy.getSizeInBits() < 32) return false; if (LitTy.isVector() && LitTy.getSizeInBits() < 32) return false; return BigTy.getSizeInBits() % LitTy.getSizeInBits() == 0; }) // Any vectors left are the wrong size. Scalarize them. .scalarize(0) .scalarize(1); } getActionDefinitionsBuilder(G_EXTRACT_VECTOR_ELT) .unsupportedIf([=](const LegalityQuery &Query) { const LLT &EltTy = Query.Types[1].getElementType(); return Query.Types[0] != EltTy; }) .minScalar(2, s64) .legalIf([=](const LegalityQuery &Query) { const LLT &VecTy = Query.Types[1]; return VecTy == v2s16 || VecTy == v4s16 || VecTy == v8s16 || VecTy == v4s32 || VecTy == v2s64 || VecTy == v2s32 || VecTy == v16s8 || VecTy == v2s32 || VecTy == v2p0; }) .minScalarOrEltIf( [=](const LegalityQuery &Query) { // We want to promote to to if that wouldn't // cause the total vec size to be > 128b. return Query.Types[1].getNumElements() <= 2; }, 0, s64) .minScalarOrEltIf( [=](const LegalityQuery &Query) { return Query.Types[1].getNumElements() <= 4; }, 0, s32) .minScalarOrEltIf( [=](const LegalityQuery &Query) { return Query.Types[1].getNumElements() <= 8; }, 0, s16) .minScalarOrEltIf( [=](const LegalityQuery &Query) { return Query.Types[1].getNumElements() <= 16; }, 0, s8) .minScalarOrElt(0, s8); // Worst case, we need at least s8. getActionDefinitionsBuilder(G_INSERT_VECTOR_ELT) .legalIf(typeInSet(0, {v8s16, v2s32, v4s32, v2s64})); getActionDefinitionsBuilder(G_BUILD_VECTOR) .legalFor({{v8s8, s8}, {v16s8, s8}, {v4s16, s16}, {v8s16, s16}, {v2s32, s32}, {v4s32, s32}, {v2p0, p0}, {v2s64, s64}}) .clampNumElements(0, v4s32, v4s32) .clampNumElements(0, v2s64, v2s64) // Deal with larger scalar types, which will be implicitly truncated. .legalIf([=](const LegalityQuery &Query) { return Query.Types[0].getScalarSizeInBits() < Query.Types[1].getSizeInBits(); }) .minScalarSameAs(1, 0); getActionDefinitionsBuilder(G_CTLZ) .legalForCartesianProduct( {s32, s64, v8s8, v16s8, v4s16, v8s16, v2s32, v4s32}) .scalarize(1); getActionDefinitionsBuilder(G_SHUFFLE_VECTOR) .legalIf([=](const LegalityQuery &Query) { const LLT &DstTy = Query.Types[0]; const LLT &SrcTy = Query.Types[1]; // For now just support the TBL2 variant which needs the source vectors // to be the same size as the dest. if (DstTy != SrcTy) return false; for (auto &Ty : {v2s32, v4s32, v2s64, v2p0, v16s8, v8s16}) { if (DstTy == Ty) return true; } return false; }) // G_SHUFFLE_VECTOR can have scalar sources (from 1 x s vectors), we // just want those lowered into G_BUILD_VECTOR .lowerIf([=](const LegalityQuery &Query) { return !Query.Types[1].isVector(); }) .clampNumElements(0, v4s32, v4s32) .clampNumElements(0, v2s64, v2s64); getActionDefinitionsBuilder(G_CONCAT_VECTORS) .legalFor({{v4s32, v2s32}, {v8s16, v4s16}}); getActionDefinitionsBuilder(G_JUMP_TABLE).legalFor({{p0}, {s64}}); getActionDefinitionsBuilder(G_BRJT).legalIf([=](const LegalityQuery &Query) { return Query.Types[0] == p0 && Query.Types[1] == s64; }); getActionDefinitionsBuilder(G_DYN_STACKALLOC).lower(); getActionDefinitionsBuilder({G_MEMCPY, G_MEMMOVE, G_MEMSET}).libcall(); getActionDefinitionsBuilder(G_ABS).lowerIf( [=](const LegalityQuery &Query) { return Query.Types[0].isScalar(); }); getActionDefinitionsBuilder(G_VECREDUCE_FADD) // We only have FADDP to do reduction-like operations. Lower the rest. .legalFor({{s32, v2s32}, {s64, v2s64}}) .lower(); getActionDefinitionsBuilder(G_VECREDUCE_ADD) .legalFor({{s8, v16s8}, {s16, v8s16}, {s32, v4s32}, {s64, v2s64}}) .lower(); computeTables(); verify(*ST.getInstrInfo()); } bool AArch64LegalizerInfo::legalizeCustom(LegalizerHelper &Helper, MachineInstr &MI) const { MachineIRBuilder &MIRBuilder = Helper.MIRBuilder; MachineRegisterInfo &MRI = *MIRBuilder.getMRI(); GISelChangeObserver &Observer = Helper.Observer; switch (MI.getOpcode()) { default: // No idea what to do. return false; case TargetOpcode::G_VAARG: return legalizeVaArg(MI, MRI, MIRBuilder); case TargetOpcode::G_LOAD: case TargetOpcode::G_STORE: return legalizeLoadStore(MI, MRI, MIRBuilder, Observer); case TargetOpcode::G_SHL: case TargetOpcode::G_ASHR: case TargetOpcode::G_LSHR: return legalizeShlAshrLshr(MI, MRI, MIRBuilder, Observer); case TargetOpcode::G_GLOBAL_VALUE: return legalizeSmallCMGlobalValue(MI, MRI, MIRBuilder, Observer); case TargetOpcode::G_TRUNC: return legalizeVectorTrunc(MI, Helper); } llvm_unreachable("expected switch to return"); } static void extractParts(Register Reg, MachineRegisterInfo &MRI, MachineIRBuilder &MIRBuilder, LLT Ty, int NumParts, SmallVectorImpl &VRegs) { for (int I = 0; I < NumParts; ++I) VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); MIRBuilder.buildUnmerge(VRegs, Reg); } bool AArch64LegalizerInfo::legalizeVectorTrunc( MachineInstr &MI, LegalizerHelper &Helper) const { MachineIRBuilder &MIRBuilder = Helper.MIRBuilder; MachineRegisterInfo &MRI = *MIRBuilder.getMRI(); // Similar to how operand splitting is done in SelectiondDAG, we can handle // %res(v8s8) = G_TRUNC %in(v8s32) by generating: // %inlo(<4x s32>), %inhi(<4 x s32>) = G_UNMERGE %in(<8 x s32>) // %lo16(<4 x s16>) = G_TRUNC %inlo // %hi16(<4 x s16>) = G_TRUNC %inhi // %in16(<8 x s16>) = G_CONCAT_VECTORS %lo16, %hi16 // %res(<8 x s8>) = G_TRUNC %in16 Register DstReg = MI.getOperand(0).getReg(); Register SrcReg = MI.getOperand(1).getReg(); LLT DstTy = MRI.getType(DstReg); LLT SrcTy = MRI.getType(SrcReg); assert(isPowerOf2_32(DstTy.getSizeInBits()) && isPowerOf2_32(SrcTy.getSizeInBits())); // Split input type. LLT SplitSrcTy = SrcTy.changeNumElements(SrcTy.getNumElements() / 2); // First, split the source into two smaller vectors. SmallVector SplitSrcs; extractParts(SrcReg, MRI, MIRBuilder, SplitSrcTy, 2, SplitSrcs); // Truncate the splits into intermediate narrower elements. LLT InterTy = SplitSrcTy.changeElementSize(DstTy.getScalarSizeInBits() * 2); for (unsigned I = 0; I < SplitSrcs.size(); ++I) SplitSrcs[I] = MIRBuilder.buildTrunc(InterTy, SplitSrcs[I]).getReg(0); auto Concat = MIRBuilder.buildConcatVectors( DstTy.changeElementSize(DstTy.getScalarSizeInBits() * 2), SplitSrcs); Helper.Observer.changingInstr(MI); MI.getOperand(1).setReg(Concat.getReg(0)); Helper.Observer.changedInstr(MI); return true; } bool AArch64LegalizerInfo::legalizeSmallCMGlobalValue( MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &MIRBuilder, GISelChangeObserver &Observer) const { assert(MI.getOpcode() == TargetOpcode::G_GLOBAL_VALUE); // We do this custom legalization to convert G_GLOBAL_VALUE into target ADRP + // G_ADD_LOW instructions. // By splitting this here, we can optimize accesses in the small code model by // folding in the G_ADD_LOW into the load/store offset. auto GV = MI.getOperand(1).getGlobal(); if (GV->isThreadLocal()) return true; // Don't want to modify TLS vars. auto &TM = ST->getTargetLowering()->getTargetMachine(); unsigned OpFlags = ST->ClassifyGlobalReference(GV, TM); if (OpFlags & AArch64II::MO_GOT) return true; Register DstReg = MI.getOperand(0).getReg(); auto ADRP = MIRBuilder.buildInstr(AArch64::ADRP, {LLT::pointer(0, 64)}, {}) .addGlobalAddress(GV, 0, OpFlags | AArch64II::MO_PAGE); // Set the regclass on the dest reg too. MRI.setRegClass(ADRP.getReg(0), &AArch64::GPR64RegClass); // MO_TAGGED on the page indicates a tagged address. Set the tag now. We do so // by creating a MOVK that sets bits 48-63 of the register to (global address // + 0x100000000 - PC) >> 48. The additional 0x100000000 offset here is to // prevent an incorrect tag being generated during relocation when the the // global appears before the code section. Without the offset, a global at // `0x0f00'0000'0000'1000` (i.e. at `0x1000` with tag `0xf`) that's referenced // by code at `0x2000` would result in `0x0f00'0000'0000'1000 - 0x2000 = // 0x0eff'ffff'ffff'f000`, meaning the tag would be incorrectly set to `0xe` // instead of `0xf`. // This assumes that we're in the small code model so we can assume a binary // size of <= 4GB, which makes the untagged PC relative offset positive. The // binary must also be loaded into address range [0, 2^48). Both of these // properties need to be ensured at runtime when using tagged addresses. if (OpFlags & AArch64II::MO_TAGGED) { ADRP = MIRBuilder.buildInstr(AArch64::MOVKXi, {LLT::pointer(0, 64)}, {ADRP}) .addGlobalAddress(GV, 0x100000000, AArch64II::MO_PREL | AArch64II::MO_G3) .addImm(48); MRI.setRegClass(ADRP.getReg(0), &AArch64::GPR64RegClass); } MIRBuilder.buildInstr(AArch64::G_ADD_LOW, {DstReg}, {ADRP}) .addGlobalAddress(GV, 0, OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC); MI.eraseFromParent(); return true; } bool AArch64LegalizerInfo::legalizeIntrinsic(LegalizerHelper &Helper, MachineInstr &MI) const { return true; } bool AArch64LegalizerInfo::legalizeShlAshrLshr( MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &MIRBuilder, GISelChangeObserver &Observer) const { assert(MI.getOpcode() == TargetOpcode::G_ASHR || MI.getOpcode() == TargetOpcode::G_LSHR || MI.getOpcode() == TargetOpcode::G_SHL); // If the shift amount is a G_CONSTANT, promote it to a 64 bit type so the // imported patterns can select it later. Either way, it will be legal. Register AmtReg = MI.getOperand(2).getReg(); auto VRegAndVal = getConstantVRegValWithLookThrough(AmtReg, MRI); if (!VRegAndVal) return true; // Check the shift amount is in range for an immediate form. int64_t Amount = VRegAndVal->Value; if (Amount > 31) return true; // This will have to remain a register variant. auto ExtCst = MIRBuilder.buildConstant(LLT::scalar(64), Amount); MI.getOperand(2).setReg(ExtCst.getReg(0)); return true; } bool AArch64LegalizerInfo::legalizeLoadStore( MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &MIRBuilder, GISelChangeObserver &Observer) const { assert(MI.getOpcode() == TargetOpcode::G_STORE || MI.getOpcode() == TargetOpcode::G_LOAD); // Here we just try to handle vector loads/stores where our value type might // have pointer elements, which the SelectionDAG importer can't handle. To // allow the existing patterns for s64 to fire for p0, we just try to bitcast // the value to use s64 types. // Custom legalization requires the instruction, if not deleted, must be fully // legalized. In order to allow further legalization of the inst, we create // a new instruction and erase the existing one. Register ValReg = MI.getOperand(0).getReg(); const LLT ValTy = MRI.getType(ValReg); if (!ValTy.isVector() || !ValTy.getElementType().isPointer() || ValTy.getElementType().getAddressSpace() != 0) { LLVM_DEBUG(dbgs() << "Tried to do custom legalization on wrong load/store"); return false; } unsigned PtrSize = ValTy.getElementType().getSizeInBits(); const LLT NewTy = LLT::vector(ValTy.getNumElements(), PtrSize); auto &MMO = **MI.memoperands_begin(); if (MI.getOpcode() == TargetOpcode::G_STORE) { auto Bitcast = MIRBuilder.buildBitcast(NewTy, ValReg); MIRBuilder.buildStore(Bitcast.getReg(0), MI.getOperand(1), MMO); } else { auto NewLoad = MIRBuilder.buildLoad(NewTy, MI.getOperand(1), MMO); MIRBuilder.buildBitcast(ValReg, NewLoad); } MI.eraseFromParent(); return true; } bool AArch64LegalizerInfo::legalizeVaArg(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &MIRBuilder) const { MachineFunction &MF = MIRBuilder.getMF(); Align Alignment(MI.getOperand(2).getImm()); Register Dst = MI.getOperand(0).getReg(); Register ListPtr = MI.getOperand(1).getReg(); LLT PtrTy = MRI.getType(ListPtr); LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); const unsigned PtrSize = PtrTy.getSizeInBits() / 8; const Align PtrAlign = Align(PtrSize); auto List = MIRBuilder.buildLoad( PtrTy, ListPtr, *MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOLoad, PtrSize, PtrAlign)); MachineInstrBuilder DstPtr; if (Alignment > PtrAlign) { // Realign the list to the actual required alignment. auto AlignMinus1 = MIRBuilder.buildConstant(IntPtrTy, Alignment.value() - 1); auto ListTmp = MIRBuilder.buildPtrAdd(PtrTy, List, AlignMinus1.getReg(0)); DstPtr = MIRBuilder.buildMaskLowPtrBits(PtrTy, ListTmp, Log2(Alignment)); } else DstPtr = List; uint64_t ValSize = MRI.getType(Dst).getSizeInBits() / 8; MIRBuilder.buildLoad( Dst, DstPtr, *MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOLoad, ValSize, std::max(Alignment, PtrAlign))); auto Size = MIRBuilder.buildConstant(IntPtrTy, alignTo(ValSize, PtrAlign)); auto NewList = MIRBuilder.buildPtrAdd(PtrTy, DstPtr, Size.getReg(0)); MIRBuilder.buildStore(NewList, ListPtr, *MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOStore, PtrSize, PtrAlign)); MI.eraseFromParent(); return true; }