/* * Copyright 2013 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "gm/gm.h" #include "include/core/SkBitmap.h" #include "include/core/SkBlurTypes.h" #include "include/core/SkCanvas.h" #include "include/core/SkColor.h" #include "include/core/SkFilterQuality.h" #include "include/core/SkImage.h" #include "include/core/SkImageInfo.h" #include "include/core/SkMaskFilter.h" #include "include/core/SkMatrix.h" #include "include/core/SkPaint.h" #include "include/core/SkPoint.h" #include "include/core/SkRect.h" #include "include/core/SkRefCnt.h" #include "include/core/SkScalar.h" #include "include/core/SkShader.h" #include "include/core/SkSize.h" #include "include/core/SkString.h" #include "include/core/SkSurface.h" #include "include/core/SkTileMode.h" #include "include/core/SkTypes.h" #include "include/gpu/GrContextOptions.h" #include "include/private/SkTDArray.h" #include "src/core/SkBlurMask.h" #include "tools/ToolUtils.h" /** Creates an image with two one-pixel wide borders around a checkerboard. The checkerboard is 2x2 checks where each check has as many pixels as is necessary to fill the interior. It returns the image and a src rect that bounds the checkerboard portion. */ std::tuple, SkRect> make_ringed_image(int width, int height) { // These are kRGBA_8888_SkColorType values. static constexpr uint32_t kOuterRingColor = 0xFFFF0000, kInnerRingColor = 0xFF0000FF, kCheckColor1 = 0xFF000000, kCheckColor2 = 0xFFFFFFFF; SkASSERT(0 == width % 2 && 0 == height % 2); SkASSERT(width >= 6 && height >= 6); SkImageInfo info = SkImageInfo::Make(width, height, kRGBA_8888_SkColorType, kPremul_SkAlphaType); size_t rowBytes = SkAlign4(info.minRowBytes()); SkBitmap bitmap; bitmap.allocPixels(info, rowBytes); uint32_t* scanline = bitmap.getAddr32(0, 0); for (int x = 0; x < width; ++x) { scanline[x] = kOuterRingColor; } scanline = bitmap.getAddr32(0, 1); scanline[0] = kOuterRingColor; for (int x = 1; x < width - 1; ++x) { scanline[x] = kInnerRingColor; } scanline[width - 1] = kOuterRingColor; for (int y = 2; y < height / 2; ++y) { scanline = bitmap.getAddr32(0, y); scanline[0] = kOuterRingColor; scanline[1] = kInnerRingColor; for (int x = 2; x < width / 2; ++x) { scanline[x] = kCheckColor1; } for (int x = width / 2; x < width - 2; ++x) { scanline[x] = kCheckColor2; } scanline[width - 2] = kInnerRingColor; scanline[width - 1] = kOuterRingColor; } for (int y = height / 2; y < height - 2; ++y) { scanline = bitmap.getAddr32(0, y); scanline[0] = kOuterRingColor; scanline[1] = kInnerRingColor; for (int x = 2; x < width / 2; ++x) { scanline[x] = kCheckColor2; } for (int x = width / 2; x < width - 2; ++x) { scanline[x] = kCheckColor1; } scanline[width - 2] = kInnerRingColor; scanline[width - 1] = kOuterRingColor; } scanline = bitmap.getAddr32(0, height - 2); scanline[0] = kOuterRingColor; for (int x = 1; x < width - 1; ++x) { scanline[x] = kInnerRingColor; } scanline[width - 1] = kOuterRingColor; scanline = bitmap.getAddr32(0, height - 1); for (int x = 0; x < width; ++x) { scanline[x] = kOuterRingColor; } bitmap.setImmutable(); return {bitmap.asImage(), SkRect::Make({2, 2, width - 2, height - 2})}; } /** * These GMs exercise the behavior of the drawImageRect and its SrcRectConstraint parameter. They * tests various matrices, filter qualities, and interaction with mask filters. They also exercise * the tiling image draws of SkGpuDevice by overriding the maximum texture size of the GrContext. */ class SrcRectConstraintGM : public skiagm::GM { public: SrcRectConstraintGM(const char* shortName, SkCanvas::SrcRectConstraint constraint, bool batch) : fShortName(shortName) , fConstraint(constraint) , fBatch(batch) { // Make sure GPU SkSurfaces can be created for this GM. SkASSERT(this->onISize().width() <= kMaxTextureSize && this->onISize().height() <= kMaxTextureSize); } protected: SkString onShortName() override { return fShortName; } SkISize onISize() override { return SkISize::Make(800, 1000); } void drawImage(SkCanvas* canvas, sk_sp image, SkRect srcRect, SkRect dstRect, const SkSamplingOptions& sampling, SkPaint* paint) { if (fBatch) { SkCanvas::ImageSetEntry imageSetEntry[1]; imageSetEntry[0].fImage = image; imageSetEntry[0].fSrcRect = srcRect; imageSetEntry[0].fDstRect = dstRect; imageSetEntry[0].fAAFlags = paint->isAntiAlias() ? SkCanvas::kAll_QuadAAFlags : SkCanvas::kNone_QuadAAFlags; canvas->experimental_DrawEdgeAAImageSet(imageSetEntry, SK_ARRAY_COUNT(imageSetEntry), /*dstClips=*/nullptr, /*preViewMatrices=*/nullptr, sampling, paint, fConstraint); } else { canvas->drawImageRect(image.get(), srcRect, dstRect, sampling, paint, fConstraint); } } // Draw the area of interest of the small image void drawCase1(SkCanvas* canvas, int transX, int transY, bool aa, const SkSamplingOptions& sampling) { SkRect dst = SkRect::MakeXYWH(SkIntToScalar(transX), SkIntToScalar(transY), SkIntToScalar(kBlockSize), SkIntToScalar(kBlockSize)); SkPaint paint; paint.setColor(SK_ColorBLUE); paint.setAntiAlias(aa); drawImage(canvas, fSmallImage, fSmallSrcRect, dst, sampling, &paint); } // Draw the area of interest of the large image void drawCase2(SkCanvas* canvas, int transX, int transY, bool aa, const SkSamplingOptions& sampling) { SkRect dst = SkRect::MakeXYWH(SkIntToScalar(transX), SkIntToScalar(transY), SkIntToScalar(kBlockSize), SkIntToScalar(kBlockSize)); SkPaint paint; paint.setColor(SK_ColorBLUE); paint.setAntiAlias(aa); drawImage(canvas, fBigImage, fBigSrcRect, dst, sampling, &paint); } // Draw upper-left 1/4 of the area of interest of the large image void drawCase3(SkCanvas* canvas, int transX, int transY, bool aa, const SkSamplingOptions& sampling) { SkRect src = SkRect::MakeXYWH(fBigSrcRect.fLeft, fBigSrcRect.fTop, fBigSrcRect.width()/2, fBigSrcRect.height()/2); SkRect dst = SkRect::MakeXYWH(SkIntToScalar(transX), SkIntToScalar(transY), SkIntToScalar(kBlockSize), SkIntToScalar(kBlockSize)); SkPaint paint; paint.setColor(SK_ColorBLUE); paint.setAntiAlias(aa); drawImage(canvas, fBigImage, src, dst, sampling, &paint); } // Draw the area of interest of the small image with a normal blur void drawCase4(SkCanvas* canvas, int transX, int transY, bool aa, const SkSamplingOptions& sampling) { SkRect dst = SkRect::MakeXYWH(SkIntToScalar(transX), SkIntToScalar(transY), SkIntToScalar(kBlockSize), SkIntToScalar(kBlockSize)); SkPaint paint; paint.setMaskFilter(SkMaskFilter::MakeBlur(kNormal_SkBlurStyle, SkBlurMask::ConvertRadiusToSigma(3))); paint.setColor(SK_ColorBLUE); paint.setAntiAlias(aa); drawImage(canvas, fSmallImage, fSmallSrcRect, dst, sampling, &paint); } // Draw the area of interest of the small image with a outer blur void drawCase5(SkCanvas* canvas, int transX, int transY, bool aa, const SkSamplingOptions& sampling) { SkRect dst = SkRect::MakeXYWH(SkIntToScalar(transX), SkIntToScalar(transY), SkIntToScalar(kBlockSize), SkIntToScalar(kBlockSize)); SkPaint paint; paint.setMaskFilter(SkMaskFilter::MakeBlur(kOuter_SkBlurStyle, SkBlurMask::ConvertRadiusToSigma(7))); paint.setColor(SK_ColorBLUE); paint.setAntiAlias(aa); drawImage(canvas, fSmallImage, fSmallSrcRect, dst, sampling, &paint); } void onOnceBeforeDraw() override { std::tie(fBigImage, fBigSrcRect) = make_ringed_image(2*kMaxTextureSize, 2*kMaxTextureSize); std::tie(fSmallImage, fSmallSrcRect) = make_ringed_image(kSmallSize, kSmallSize); } void onDraw(SkCanvas* canvas) override { canvas->clear(SK_ColorGRAY); std::vector matrices; // Draw with identity matrices.push_back(SkMatrix::I()); // Draw with rotation and scale down in x, up in y. SkMatrix m; constexpr SkScalar kBottom = SkIntToScalar(kRow4Y + kBlockSize + kBlockSpacing); m.setTranslate(0, kBottom); m.preRotate(15.f, 0, kBottom + kBlockSpacing); m.preScale(0.71f, 1.22f); matrices.push_back(m); // Align the next set with the middle of the previous in y, translated to the right in x. SkPoint corners[] = {{0, 0}, {0, kBottom}, {kWidth, kBottom}, {kWidth, 0}}; matrices.back().mapPoints(corners, 4); SkScalar y = (corners[0].fY + corners[1].fY + corners[2].fY + corners[3].fY) / 4; SkScalar x = std::max({corners[0].fX, corners[1].fX, corners[2].fX, corners[3].fX}); m.setTranslate(x, y); m.preScale(0.2f, 0.2f); matrices.push_back(m); const SkSamplingOptions none(SkFilterMode::kNearest); const SkSamplingOptions low(SkFilterMode::kLinear); const SkSamplingOptions high(SkCubicResampler::Mitchell()); SkScalar maxX = 0; for (bool antiAlias : {false, true}) { canvas->save(); canvas->translate(maxX, 0); for (const SkMatrix& matrix : matrices) { canvas->save(); canvas->concat(matrix); // First draw a column with no filtering this->drawCase1(canvas, kCol0X, kRow0Y, antiAlias, none); this->drawCase2(canvas, kCol0X, kRow1Y, antiAlias, none); this->drawCase3(canvas, kCol0X, kRow2Y, antiAlias, none); this->drawCase4(canvas, kCol0X, kRow3Y, antiAlias, none); this->drawCase5(canvas, kCol0X, kRow4Y, antiAlias, none); // Then draw a column with low filtering this->drawCase1(canvas, kCol1X, kRow0Y, antiAlias, low); this->drawCase2(canvas, kCol1X, kRow1Y, antiAlias, low); this->drawCase3(canvas, kCol1X, kRow2Y, antiAlias, low); this->drawCase4(canvas, kCol1X, kRow3Y, antiAlias, low); this->drawCase5(canvas, kCol1X, kRow4Y, antiAlias, low); // Then draw a column with high filtering. Skip it if in kStrict mode and MIP // mapping will be used. On GPU we allow bleeding at non-base levels because // building a new MIP chain for the subset is expensive. SkScalar scales[2]; SkAssertResult(matrix.getMinMaxScales(scales)); if (fConstraint != SkCanvas::kStrict_SrcRectConstraint || scales[0] >= 1.f) { this->drawCase1(canvas, kCol2X, kRow0Y, antiAlias, high); this->drawCase2(canvas, kCol2X, kRow1Y, antiAlias, high); this->drawCase3(canvas, kCol2X, kRow2Y, antiAlias, high); this->drawCase4(canvas, kCol2X, kRow3Y, antiAlias, high); this->drawCase5(canvas, kCol2X, kRow4Y, antiAlias, high); } SkPoint innerCorners[] = {{0, 0}, {0, kBottom}, {kWidth, kBottom}, {kWidth, 0}}; matrix.mapPoints(innerCorners, 4); SkScalar x = kBlockSize + std::max({innerCorners[0].fX, innerCorners[1].fX, innerCorners[2].fX, innerCorners[3].fX}); maxX = std::max(maxX, x); canvas->restore(); } canvas->restore(); } } void modifyGrContextOptions(GrContextOptions* options) override { options->fMaxTextureSizeOverride = kMaxTextureSize; } private: static constexpr int kBlockSize = 70; static constexpr int kBlockSpacing = 12; static constexpr int kCol0X = kBlockSpacing; static constexpr int kCol1X = 2*kBlockSpacing + kBlockSize; static constexpr int kCol2X = 3*kBlockSpacing + 2*kBlockSize; static constexpr int kWidth = 4*kBlockSpacing + 3*kBlockSize; static constexpr int kRow0Y = kBlockSpacing; static constexpr int kRow1Y = 2*kBlockSpacing + kBlockSize; static constexpr int kRow2Y = 3*kBlockSpacing + 2*kBlockSize; static constexpr int kRow3Y = 4*kBlockSpacing + 3*kBlockSize; static constexpr int kRow4Y = 5*kBlockSpacing + 4*kBlockSize; static constexpr int kSmallSize = 6; // This must be at least as large as the GM width and height so that a surface can be made. static constexpr int kMaxTextureSize = 1000; SkString fShortName; sk_sp fBigImage; sk_sp fSmallImage; SkRect fBigSrcRect; SkRect fSmallSrcRect; SkCanvas::SrcRectConstraint fConstraint; bool fBatch = false; using INHERITED = GM; }; DEF_GM(return new SrcRectConstraintGM("strict_constraint_no_red_allowed", SkCanvas::kStrict_SrcRectConstraint, /*batch=*/false);); DEF_GM(return new SrcRectConstraintGM("strict_constraint_batch_no_red_allowed", SkCanvas::kStrict_SrcRectConstraint, /*batch=*/true);); DEF_GM(return new SrcRectConstraintGM("fast_constraint_red_is_allowed", SkCanvas::kFast_SrcRectConstraint, /*batch=*/false);); /////////////////////////////////////////////////////////////////////////////////////////////////// // Construct an image and return the inner "src" rect. Build the image such that the interior is // blue, with a margin of blue (2px) but then an outer margin of red. // // Show that kFast_SrcRectConstraint sees even the red margin (due to mipmapping) when the image // is scaled down far enough. // static sk_sp make_image(SkCanvas* canvas, SkRect* srcR) { // Intentially making the size a power of 2 to avoid the noise from how different GPUs will // produce different mipmap filtering when we have an odd sized texture. const int N = 10 + 2 + 8 + 2 + 10; SkImageInfo info = SkImageInfo::MakeN32Premul(N, N); auto surface = ToolUtils::makeSurface(canvas, info); SkCanvas* c = surface->getCanvas(); SkRect r = SkRect::MakeIWH(info.width(), info.height()); SkPaint paint; paint.setColor(SK_ColorRED); c->drawRect(r, paint); r.inset(10, 10); paint.setColor(SK_ColorBLUE); c->drawRect(r, paint); *srcR = r.makeInset(2, 2); return surface->makeImageSnapshot(); } DEF_SIMPLE_GM(bleed_downscale, canvas, 360, 240) { SkRect src; sk_sp img = make_image(canvas, &src); SkPaint paint; canvas->translate(10, 10); const SkCanvas::SrcRectConstraint constraints[] = { SkCanvas::kStrict_SrcRectConstraint, SkCanvas::kFast_SrcRectConstraint }; const SkSamplingOptions samplings[] = { SkSamplingOptions(SkFilterMode::kNearest), SkSamplingOptions(SkFilterMode::kLinear), SkSamplingOptions(SkFilterMode::kLinear, SkMipmapMode::kLinear), }; for (auto constraint : constraints) { canvas->save(); for (auto sampling : samplings) { auto surf = ToolUtils::makeSurface(canvas, SkImageInfo::MakeN32Premul(1, 1)); surf->getCanvas()->drawImageRect(img, src, SkRect::MakeWH(1, 1), sampling, nullptr, constraint); // now blow up the 1 pixel result canvas->drawImageRect(surf->makeImageSnapshot(), SkRect::MakeWH(100, 100), SkSamplingOptions()); canvas->translate(120, 0); } canvas->restore(); canvas->translate(0, 120); } }