/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "tests/Test.h" #include "include/gpu/GrDirectContext.h" #include "src/gpu/GrClip.h" #include "src/gpu/GrDirectContextPriv.h" #include "src/gpu/GrGpuResource.h" #include "src/gpu/GrImageInfo.h" #include "src/gpu/GrMemoryPool.h" #include "src/gpu/GrProxyProvider.h" #include "src/gpu/GrResourceProvider.h" #include "src/gpu/GrSurfaceDrawContext.h" #include "src/gpu/SkGr.h" #include "src/gpu/glsl/GrGLSLFragmentProcessor.h" #include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h" #include "src/gpu/ops/GrFillRectOp.h" #include "src/gpu/ops/GrMeshDrawOp.h" #include "tests/TestUtils.h" #include #include namespace { class TestOp : public GrMeshDrawOp { public: DEFINE_OP_CLASS_ID static GrOp::Owner Make(GrRecordingContext* rContext, std::unique_ptr fp) { return GrOp::Make(rContext, std::move(fp)); } const char* name() const override { return "TestOp"; } void visitProxies(const VisitProxyFunc& func) const override { fProcessors.visitProxies(func); } FixedFunctionFlags fixedFunctionFlags() const override { return FixedFunctionFlags::kNone; } GrProcessorSet::Analysis finalize(const GrCaps& caps, const GrAppliedClip* clip, GrClampType clampType) override { static constexpr GrProcessorAnalysisColor kUnknownColor; SkPMColor4f overrideColor; return fProcessors.finalize( kUnknownColor, GrProcessorAnalysisCoverage::kNone, clip, &GrUserStencilSettings::kUnused, caps, clampType, &overrideColor); } private: friend class ::GrOp; // for ctor TestOp(std::unique_ptr fp) : INHERITED(ClassID()), fProcessors(std::move(fp)) { this->setBounds(SkRect::MakeWH(100, 100), HasAABloat::kNo, IsHairline::kNo); } GrProgramInfo* programInfo() override { return nullptr; } void onCreateProgramInfo(const GrCaps*, SkArenaAlloc*, const GrSurfaceProxyView& writeView, GrAppliedClip&&, const GrXferProcessor::DstProxyView&, GrXferBarrierFlags renderPassXferBarriers, GrLoadOp colorLoadOp) override {} void onPrePrepareDraws(GrRecordingContext*, const GrSurfaceProxyView& writeView, GrAppliedClip*, const GrXferProcessor::DstProxyView&, GrXferBarrierFlags renderPassXferBarriers, GrLoadOp colorLoadOp) override {} void onPrepareDraws(Target* target) override { return; } void onExecute(GrOpFlushState*, const SkRect&) override { return; } GrProcessorSet fProcessors; using INHERITED = GrMeshDrawOp; }; /** * FP used to test ref counts on owned GrGpuResources. Can also be a parent FP to test counts * of resources owned by child FPs. */ class TestFP : public GrFragmentProcessor { public: static std::unique_ptr Make(std::unique_ptr child) { return std::unique_ptr(new TestFP(std::move(child))); } static std::unique_ptr Make(const SkTArray& views) { return std::unique_ptr(new TestFP(views)); } const char* name() const override { return "test"; } void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder* b) const override { static std::atomic nextKey{0}; b->add32(nextKey++); } std::unique_ptr clone() const override { return std::unique_ptr(new TestFP(*this)); } private: TestFP(const SkTArray& views) : INHERITED(kTestFP_ClassID, kNone_OptimizationFlags) { for (const GrSurfaceProxyView& view : views) { this->registerChild(GrTextureEffect::Make(view, kUnknown_SkAlphaType)); } } TestFP(std::unique_ptr child) : INHERITED(kTestFP_ClassID, kNone_OptimizationFlags) { this->registerChild(std::move(child)); } explicit TestFP(const TestFP& that) : INHERITED(kTestFP_ClassID, that.optimizationFlags()) { this->cloneAndRegisterAllChildProcessors(that); } std::unique_ptr onMakeProgramImpl() const override { class TestGLSLFP : public GrGLSLFragmentProcessor { public: TestGLSLFP() {} void emitCode(EmitArgs& args) override { args.fFragBuilder->codeAppendf("return half4(1);"); } private: }; return std::make_unique(); } bool onIsEqual(const GrFragmentProcessor&) const override { return false; } using INHERITED = GrFragmentProcessor; }; } // namespace DEF_GPUTEST_FOR_ALL_CONTEXTS(ProcessorRefTest, reporter, ctxInfo) { auto context = ctxInfo.directContext(); GrProxyProvider* proxyProvider = context->priv().proxyProvider(); static constexpr SkISize kDims = {10, 10}; const GrBackendFormat format = context->priv().caps()->getDefaultBackendFormat(GrColorType::kRGBA_8888, GrRenderable::kNo); GrSwizzle swizzle = context->priv().caps()->getReadSwizzle(format, GrColorType::kRGBA_8888); for (bool makeClone : {false, true}) { for (int parentCnt = 0; parentCnt < 2; parentCnt++) { auto surfaceDrawContext = GrSurfaceDrawContext::Make( context, GrColorType::kRGBA_8888, nullptr, SkBackingFit::kApprox, {1, 1}, SkSurfaceProps()); { sk_sp proxy = proxyProvider->createProxy( format, kDims, GrRenderable::kNo, 1, GrMipmapped::kNo, SkBackingFit::kExact, SkBudgeted::kYes, GrProtected::kNo); { SkTArray views; views.push_back({proxy, kTopLeft_GrSurfaceOrigin, swizzle}); auto fp = TestFP::Make(std::move(views)); for (int i = 0; i < parentCnt; ++i) { fp = TestFP::Make(std::move(fp)); } std::unique_ptr clone; if (makeClone) { clone = fp->clone(); } GrOp::Owner op = TestOp::Make(context, std::move(fp)); surfaceDrawContext->addDrawOp(std::move(op)); if (clone) { op = TestOp::Make(context, std::move(clone)); surfaceDrawContext->addDrawOp(std::move(op)); } } // If the fp is cloned the number of refs should increase by one (for the clone) int expectedProxyRefs = makeClone ? 3 : 2; CheckSingleThreadedProxyRefs(reporter, proxy.get(), expectedProxyRefs, -1); context->flushAndSubmit(); // just one from the 'proxy' sk_sp CheckSingleThreadedProxyRefs(reporter, proxy.get(), 1, 1); } } } } #include "tools/flags/CommandLineFlags.h" static DEFINE_bool(randomProcessorTest, false, "Use non-deterministic seed for random processor tests?"); static DEFINE_int(processorSeed, 0, "Use specific seed for processor tests. Overridden by --randomProcessorTest."); #if GR_TEST_UTILS static GrColor input_texel_color(int i, int j, SkScalar delta) { // Delta must be less than 0.5 to prevent over/underflow issues with the input color SkASSERT(delta <= 0.5); SkColor color = SkColorSetARGB((uint8_t)(i & 0xFF), (uint8_t)(j & 0xFF), (uint8_t)((i + j) & 0xFF), (uint8_t)((2 * j - i) & 0xFF)); SkColor4f color4f = SkColor4f::FromColor(color); // We only apply delta to the r,g, and b channels. This is because we're using this // to test the canTweakAlphaForCoverage() optimization. A processor is allowed // to use the input color's alpha in its calculation and report this optimization. for (int i = 0; i < 3; i++) { if (color4f[i] > 0.5) { color4f[i] -= delta; } else { color4f[i] += delta; } } return color4f.premul().toBytes_RGBA(); } void test_draw_op(GrRecordingContext* rContext, GrSurfaceDrawContext* rtc, std::unique_ptr fp) { GrPaint paint; paint.setColorFragmentProcessor(std::move(fp)); paint.setPorterDuffXPFactory(SkBlendMode::kSrc); auto op = GrFillRectOp::MakeNonAARect(rContext, std::move(paint), SkMatrix::I(), SkRect::MakeWH(rtc->width(), rtc->height())); rtc->addDrawOp(std::move(op)); } // The output buffer must be the same size as the render-target context. void render_fp(GrDirectContext* dContext, GrSurfaceDrawContext* rtc, std::unique_ptr fp, GrColor* outBuffer) { test_draw_op(dContext, rtc, std::move(fp)); std::fill_n(outBuffer, rtc->width() * rtc->height(), 0); auto ii = SkImageInfo::Make(rtc->dimensions(), kRGBA_8888_SkColorType, kPremul_SkAlphaType); GrPixmap resultPM(ii, outBuffer, rtc->width()*sizeof(uint32_t)); rtc->readPixels(dContext, resultPM, {0, 0}); } // This class is responsible for reproducibly generating a random fragment processor. // An identical randomly-designed FP can be generated as many times as needed. class TestFPGenerator { public: TestFPGenerator() = delete; TestFPGenerator(GrDirectContext* context, GrResourceProvider* resourceProvider) : fContext(context) , fResourceProvider(resourceProvider) , fInitialSeed(synthesizeInitialSeed()) , fRandomSeed(fInitialSeed) {} uint32_t initialSeed() { return fInitialSeed; } bool init() { // Initializes the two test texture proxies that are available to the FP test factories. SkRandom random{fRandomSeed}; static constexpr int kTestTextureSize = 256; { // Put premul data into the RGBA texture that the test FPs can optionally use. GrColor* rgbaData = new GrColor[kTestTextureSize * kTestTextureSize]; for (int y = 0; y < kTestTextureSize; ++y) { for (int x = 0; x < kTestTextureSize; ++x) { rgbaData[kTestTextureSize * y + x] = input_texel_color( random.nextULessThan(256), random.nextULessThan(256), 0.0f); } } SkImageInfo ii = SkImageInfo::Make(kTestTextureSize, kTestTextureSize, kRGBA_8888_SkColorType, kPremul_SkAlphaType); SkBitmap bitmap; bitmap.installPixels( ii, rgbaData, ii.minRowBytes(), [](void* addr, void* context) { delete[](GrColor*) addr; }, nullptr); bitmap.setImmutable(); auto view = std::get<0>(GrMakeUncachedBitmapProxyView(fContext, bitmap)); if (!view || !view.proxy()->instantiate(fResourceProvider)) { SkDebugf("Unable to instantiate RGBA8888 test texture."); return false; } fTestViews[0] = GrProcessorTestData::ViewInfo{view, GrColorType::kRGBA_8888, kPremul_SkAlphaType}; } { // Put random values into the alpha texture that the test FPs can optionally use. uint8_t* alphaData = new uint8_t[kTestTextureSize * kTestTextureSize]; for (int y = 0; y < kTestTextureSize; ++y) { for (int x = 0; x < kTestTextureSize; ++x) { alphaData[kTestTextureSize * y + x] = random.nextULessThan(256); } } SkImageInfo ii = SkImageInfo::Make(kTestTextureSize, kTestTextureSize, kAlpha_8_SkColorType, kPremul_SkAlphaType); SkBitmap bitmap; bitmap.installPixels( ii, alphaData, ii.minRowBytes(), [](void* addr, void* context) { delete[](uint8_t*) addr; }, nullptr); bitmap.setImmutable(); auto view = std::get<0>(GrMakeUncachedBitmapProxyView(fContext, bitmap)); if (!view || !view.proxy()->instantiate(fResourceProvider)) { SkDebugf("Unable to instantiate A8 test texture."); return false; } fTestViews[1] = GrProcessorTestData::ViewInfo{view, GrColorType::kAlpha_8, kPremul_SkAlphaType}; } return true; } void reroll() { // Feed our current random seed into SkRandom to generate a new seed. SkRandom random{fRandomSeed}; fRandomSeed = random.nextU(); } std::unique_ptr make(int type, int randomTreeDepth, std::unique_ptr inputFP) { // This will generate the exact same randomized FP (of each requested type) each time // it's called. Call `reroll` to get a different FP. SkRandom random{fRandomSeed}; GrProcessorTestData testData{&random, fContext, randomTreeDepth, SK_ARRAY_COUNT(fTestViews), fTestViews, std::move(inputFP)}; return GrFragmentProcessorTestFactory::MakeIdx(type, &testData); } std::unique_ptr make(int type, int randomTreeDepth, GrSurfaceProxyView view, SkAlphaType alpha = kPremul_SkAlphaType) { return make(type, randomTreeDepth, GrTextureEffect::Make(view, alpha)); } private: static uint32_t synthesizeInitialSeed() { if (FLAGS_randomProcessorTest) { std::random_device rd; return rd(); } else { return FLAGS_processorSeed; } } GrDirectContext* fContext; // owned by caller GrResourceProvider* fResourceProvider; // owned by caller const uint32_t fInitialSeed; uint32_t fRandomSeed; GrProcessorTestData::ViewInfo fTestViews[2]; }; // Creates an array of color values from input_texel_color(), to be used as an input texture. std::vector make_input_pixels(int width, int height, SkScalar delta) { std::vector pixel(width * height); for (int y = 0; y < width; ++y) { for (int x = 0; x < height; ++x) { pixel[width * y + x] = input_texel_color(x, y, delta); } } return pixel; } // Creates a texture of premul colors used as the output of the fragment processor that precedes // the fragment processor under test. An array of W*H colors are passed in as the texture data. GrSurfaceProxyView make_input_texture(GrRecordingContext* context, int width, int height, GrColor* pixel) { SkImageInfo ii = SkImageInfo::Make(width, height, kRGBA_8888_SkColorType, kPremul_SkAlphaType); SkBitmap bitmap; bitmap.installPixels(ii, pixel, ii.minRowBytes()); bitmap.setImmutable(); return std::get<0>(GrMakeUncachedBitmapProxyView(context, bitmap)); } // We tag logged data as unpremul to avoid conversion when encoding as PNG. The input texture // actually contains unpremul data. Also, even though we made the result data by rendering into // a "unpremul" GrSurfaceDrawContext, our input texture is unpremul and outside of the random // effect configuration, we didn't do anything to ensure the output is actually premul. We just // don't currently allow kUnpremul GrSurfaceDrawContexts. static constexpr auto kLogAlphaType = kUnpremul_SkAlphaType; bool log_pixels(GrColor* pixels, int widthHeight, SkString* dst) { SkImageInfo info = SkImageInfo::Make(widthHeight, widthHeight, kRGBA_8888_SkColorType, kLogAlphaType); SkBitmap bmp; bmp.installPixels(info, pixels, widthHeight * sizeof(GrColor)); return BipmapToBase64DataURI(bmp, dst); } bool log_texture_view(GrDirectContext* dContext, GrSurfaceProxyView src, SkString* dst) { SkImageInfo ii = SkImageInfo::Make(src.proxy()->dimensions(), kRGBA_8888_SkColorType, kLogAlphaType); auto sContext = GrSurfaceContext::Make(dContext, std::move(src), ii.colorInfo()); SkBitmap bm; SkAssertResult(bm.tryAllocPixels(ii)); SkAssertResult(sContext->readPixels(dContext, bm.pixmap(), {0, 0})); return BipmapToBase64DataURI(bm, dst); } bool fuzzy_color_equals(const SkPMColor4f& c1, const SkPMColor4f& c2) { // With the loss of precision of rendering into 32-bit color, then estimating the FP's output // from that, it is not uncommon for a valid output to differ from estimate by up to 0.01 // (really 1/128 ~ .0078, but frequently floating point issues make that tolerance a little // too unforgiving). static constexpr SkScalar kTolerance = 0.01f; for (int i = 0; i < 4; i++) { if (!SkScalarNearlyEqual(c1[i], c2[i], kTolerance)) { return false; } } return true; } // Given three input colors (color preceding the FP being tested) provided to the FP at the same // local coord and the three corresponding FP outputs, this ensures that either: // out[0] = fp * in[0].a, out[1] = fp * in[1].a, and out[2] = fp * in[2].a // where fp is the pre-modulated color that should not be changing across frames (FP's state doesn't // change), OR: // out[0] = fp * in[0], out[1] = fp * in[1], and out[2] = fp * in[2] // (per-channel modulation instead of modulation by just the alpha channel) // It does this by estimating the pre-modulated fp color from one of the input/output pairs and // confirms the conditions hold for the other two pairs. // It is required that the three input colors have the same alpha as fp is allowed to be a function // of the input alpha (but not r, g, or b). bool legal_modulation(const GrColor in[3], const GrColor out[3]) { // Convert to floating point, which is the number space the FP operates in (more or less) SkPMColor4f inf[3], outf[3]; for (int i = 0; i < 3; ++i) { inf[i] = SkPMColor4f::FromBytes_RGBA(in[i]); outf[i] = SkPMColor4f::FromBytes_RGBA(out[i]); } // This test is only valid if all the input alphas are the same. SkASSERT(inf[0].fA == inf[1].fA && inf[1].fA == inf[2].fA); // Reconstruct the output of the FP before the shader modulated its color with the input value. // When the original input is very small, it may cause the final output color to round // to 0, in which case we estimate the pre-modulated color using one of the stepped frames that // will then have a guaranteed larger channel value (since the offset will be added to it). SkPMColor4f fpPreColorModulation = {0,0,0,0}; SkPMColor4f fpPreAlphaModulation = {0,0,0,0}; for (int i = 0; i < 4; i++) { // Use the most stepped up frame int maxInIdx = inf[0][i] > inf[1][i] ? 0 : 1; maxInIdx = inf[maxInIdx][i] > inf[2][i] ? maxInIdx : 2; const SkPMColor4f& in = inf[maxInIdx]; const SkPMColor4f& out = outf[maxInIdx]; if (in[i] > 0) { fpPreColorModulation[i] = out[i] / in[i]; } if (in[3] > 0) { fpPreAlphaModulation[i] = out[i] / in[3]; } } // With reconstructed pre-modulated FP output, derive the expected value of fp * input for each // of the transformed input colors. SkPMColor4f expectedForAlphaModulation[3]; SkPMColor4f expectedForColorModulation[3]; for (int i = 0; i < 3; ++i) { expectedForAlphaModulation[i] = fpPreAlphaModulation * inf[i].fA; expectedForColorModulation[i] = fpPreColorModulation * inf[i]; // If the input alpha is 0 then the other channels should also be zero // since the color is assumed to be premul. Modulating zeros by anything // should produce zeros. if (inf[i].fA == 0) { SkASSERT(inf[i].fR == 0 && inf[i].fG == 0 && inf[i].fB == 0); expectedForColorModulation[i] = expectedForAlphaModulation[i] = {0, 0, 0, 0}; } } bool isLegalColorModulation = fuzzy_color_equals(outf[0], expectedForColorModulation[0]) && fuzzy_color_equals(outf[1], expectedForColorModulation[1]) && fuzzy_color_equals(outf[2], expectedForColorModulation[2]); bool isLegalAlphaModulation = fuzzy_color_equals(outf[0], expectedForAlphaModulation[0]) && fuzzy_color_equals(outf[1], expectedForAlphaModulation[1]) && fuzzy_color_equals(outf[2], expectedForAlphaModulation[2]); // This can be enabled to print the values that caused this check to fail. if (0 && !isLegalColorModulation && !isLegalAlphaModulation) { SkDebugf("Color modulation test\n\timplied mod color: (%.03f, %.03f, %.03f, %.03f)\n", fpPreColorModulation[0], fpPreColorModulation[1], fpPreColorModulation[2], fpPreColorModulation[3]); for (int i = 0; i < 3; ++i) { SkDebugf("\t(%.03f, %.03f, %.03f, %.03f) -> " "(%.03f, %.03f, %.03f, %.03f) | " "(%.03f, %.03f, %.03f, %.03f), ok: %d\n", inf[i].fR, inf[i].fG, inf[i].fB, inf[i].fA, outf[i].fR, outf[i].fG, outf[i].fB, outf[i].fA, expectedForColorModulation[i].fR, expectedForColorModulation[i].fG, expectedForColorModulation[i].fB, expectedForColorModulation[i].fA, fuzzy_color_equals(outf[i], expectedForColorModulation[i])); } SkDebugf("Alpha modulation test\n\timplied mod color: (%.03f, %.03f, %.03f, %.03f)\n", fpPreAlphaModulation[0], fpPreAlphaModulation[1], fpPreAlphaModulation[2], fpPreAlphaModulation[3]); for (int i = 0; i < 3; ++i) { SkDebugf("\t(%.03f, %.03f, %.03f, %.03f) -> " "(%.03f, %.03f, %.03f, %.03f) | " "(%.03f, %.03f, %.03f, %.03f), ok: %d\n", inf[i].fR, inf[i].fG, inf[i].fB, inf[i].fA, outf[i].fR, outf[i].fG, outf[i].fB, outf[i].fA, expectedForAlphaModulation[i].fR, expectedForAlphaModulation[i].fG, expectedForAlphaModulation[i].fB, expectedForAlphaModulation[i].fA, fuzzy_color_equals(outf[i], expectedForAlphaModulation[i])); } } return isLegalColorModulation || isLegalAlphaModulation; } DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(ProcessorOptimizationValidationTest, reporter, ctxInfo) { GrDirectContext* context = ctxInfo.directContext(); GrResourceProvider* resourceProvider = context->priv().resourceProvider(); using FPFactory = GrFragmentProcessorTestFactory; TestFPGenerator fpGenerator{context, resourceProvider}; if (!fpGenerator.init()) { ERRORF(reporter, "Could not initialize TestFPGenerator"); return; } // Make the destination context for the test. static constexpr int kRenderSize = 256; auto rtc = GrSurfaceDrawContext::Make( context, GrColorType::kRGBA_8888, nullptr, SkBackingFit::kExact, {kRenderSize, kRenderSize}, SkSurfaceProps()); // Coverage optimization uses three frames with a linearly transformed input texture. The first // frame has no offset, second frames add .2 and .4, which should then be present as a fixed // difference between the frame outputs if the FP is properly following the modulation // requirements of the coverage optimization. static constexpr SkScalar kInputDelta = 0.2f; std::vector inputPixels1 = make_input_pixels(kRenderSize, kRenderSize, 0.0f); std::vector inputPixels2 = make_input_pixels(kRenderSize, kRenderSize, 1 * kInputDelta); std::vector inputPixels3 = make_input_pixels(kRenderSize, kRenderSize, 2 * kInputDelta); GrSurfaceProxyView inputTexture1 = make_input_texture(context, kRenderSize, kRenderSize, inputPixels1.data()); GrSurfaceProxyView inputTexture2 = make_input_texture(context, kRenderSize, kRenderSize, inputPixels2.data()); GrSurfaceProxyView inputTexture3 = make_input_texture(context, kRenderSize, kRenderSize, inputPixels3.data()); // Encoded images are very verbose and this tests many potential images, so only export the // first failure (subsequent failures have a reasonable chance of being related). bool loggedFirstFailure = false; bool loggedFirstWarning = false; // Storage for the three frames required for coverage compatibility optimization testing. // Each frame uses the correspondingly numbered inputTextureX. std::vector readData1(kRenderSize * kRenderSize); std::vector readData2(kRenderSize * kRenderSize); std::vector readData3(kRenderSize * kRenderSize); // Because processor factories configure themselves in random ways, this is not exhaustive. for (int i = 0; i < FPFactory::Count(); ++i) { int optimizedForOpaqueInput = 0; int optimizedForCoverageAsAlpha = 0; int optimizedForConstantOutputForInput = 0; #ifdef __MSVC_RUNTIME_CHECKS // This test is infuriatingly slow with MSVC runtime checks enabled static constexpr int kMinimumTrials = 1; static constexpr int kMaximumTrials = 1; static constexpr int kExpectedSuccesses = 1; #else // We start by testing each fragment-processor 100 times, watching the optimization bits // that appear. If we see an optimization bit appear in those first 100 trials, we keep // running tests until we see at least five successful trials that have this optimization // bit enabled. If we never see a particular optimization bit after 100 trials, we assume // that this FP doesn't support that optimization at all. static constexpr int kMinimumTrials = 100; static constexpr int kMaximumTrials = 2000; static constexpr int kExpectedSuccesses = 5; #endif for (int trial = 0;; ++trial) { // Create a randomly-configured FP. fpGenerator.reroll(); std::unique_ptr fp = fpGenerator.make(i, /*randomTreeDepth=*/1, inputTexture1); // If we have iterated enough times and seen a sufficient number of successes on each // optimization bit that can be returned, stop running trials. if (trial >= kMinimumTrials) { bool moreTrialsNeeded = (optimizedForOpaqueInput > 0 && optimizedForOpaqueInput < kExpectedSuccesses) || (optimizedForCoverageAsAlpha > 0 && optimizedForCoverageAsAlpha < kExpectedSuccesses) || (optimizedForConstantOutputForInput > 0 && optimizedForConstantOutputForInput < kExpectedSuccesses); if (!moreTrialsNeeded) break; if (trial >= kMaximumTrials) { SkDebugf("Abandoning ProcessorOptimizationValidationTest after %d trials. " "Seed: 0x%08x, processor:\n%s", kMaximumTrials, fpGenerator.initialSeed(), fp->dumpTreeInfo().c_str()); break; } } // Skip further testing if this trial has no optimization bits enabled. if (!fp->hasConstantOutputForConstantInput() && !fp->preservesOpaqueInput() && !fp->compatibleWithCoverageAsAlpha()) { continue; } // We can make identical copies of the test FP in order to test coverage-as-alpha. if (fp->compatibleWithCoverageAsAlpha()) { // Create and render two identical versions of this FP, but using different input // textures, to check coverage optimization. We don't need to do this step for // constant-output or preserving-opacity tests. render_fp(context, rtc.get(), fpGenerator.make(i, /*randomTreeDepth=*/1, inputTexture2), readData2.data()); render_fp(context, rtc.get(), fpGenerator.make(i, /*randomTreeDepth=*/1, inputTexture3), readData3.data()); ++optimizedForCoverageAsAlpha; } if (fp->hasConstantOutputForConstantInput()) { ++optimizedForConstantOutputForInput; } if (fp->preservesOpaqueInput()) { ++optimizedForOpaqueInput; } // Draw base frame last so that rtc holds the original FP behavior if we need to dump // the image to the log. render_fp(context, rtc.get(), fpGenerator.make(i, /*randomTreeDepth=*/1, inputTexture1), readData1.data()); // This test has a history of being flaky on a number of devices. If an FP is logically // violating the optimizations, it's reasonable to expect it to violate requirements on // a large number of pixels in the image. Sporadic pixel violations are more indicative // of device errors and represents a separate problem. #if defined(SK_BUILD_FOR_SKQP) static constexpr int kMaxAcceptableFailedPixels = 0; // Strict when running as SKQP #else static constexpr int kMaxAcceptableFailedPixels = 2 * kRenderSize; // ~0.7% of the image #endif // Collect first optimization failure message, to be output later as a warning or an // error depending on whether the rendering "passed" or failed. int failedPixelCount = 0; SkString coverageMessage; SkString opaqueMessage; SkString constMessage; for (int y = 0; y < kRenderSize; ++y) { for (int x = 0; x < kRenderSize; ++x) { bool passing = true; GrColor input = inputPixels1[y * kRenderSize + x]; GrColor output = readData1[y * kRenderSize + x]; if (fp->compatibleWithCoverageAsAlpha()) { GrColor ins[3]; ins[0] = input; ins[1] = inputPixels2[y * kRenderSize + x]; ins[2] = inputPixels3[y * kRenderSize + x]; GrColor outs[3]; outs[0] = output; outs[1] = readData2[y * kRenderSize + x]; outs[2] = readData3[y * kRenderSize + x]; if (!legal_modulation(ins, outs)) { passing = false; if (coverageMessage.isEmpty()) { coverageMessage.printf( "\"Modulating\" processor did not match alpha-modulation " "nor color-modulation rules.\n" "Input: 0x%08x, Output: 0x%08x, pixel (%d, %d).", input, output, x, y); } } } SkPMColor4f input4f = SkPMColor4f::FromBytes_RGBA(input); SkPMColor4f output4f = SkPMColor4f::FromBytes_RGBA(output); SkPMColor4f expected4f; if (fp->hasConstantOutputForConstantInput(input4f, &expected4f)) { float rDiff = fabsf(output4f.fR - expected4f.fR); float gDiff = fabsf(output4f.fG - expected4f.fG); float bDiff = fabsf(output4f.fB - expected4f.fB); float aDiff = fabsf(output4f.fA - expected4f.fA); static constexpr float kTol = 4 / 255.f; if (rDiff > kTol || gDiff > kTol || bDiff > kTol || aDiff > kTol) { if (constMessage.isEmpty()) { passing = false; constMessage.printf( "Processor claimed output for const input doesn't match " "actual output.\n" "Error: %f, Tolerance: %f, input: (%f, %f, %f, %f), " "actual: (%f, %f, %f, %f), expected(%f, %f, %f, %f).", std::max(rDiff, std::max(gDiff, std::max(bDiff, aDiff))), kTol, input4f.fR, input4f.fG, input4f.fB, input4f.fA, output4f.fR, output4f.fG, output4f.fB, output4f.fA, expected4f.fR, expected4f.fG, expected4f.fB, expected4f.fA); } } } if (input4f.isOpaque() && fp->preservesOpaqueInput() && !output4f.isOpaque()) { passing = false; if (opaqueMessage.isEmpty()) { opaqueMessage.printf( "Processor claimed opaqueness is preserved but " "it is not. Input: 0x%08x, Output: 0x%08x.", input, output); } } if (!passing) { // Regardless of how many optimizations the pixel violates, count it as a // single bad pixel. failedPixelCount++; } } } // Finished analyzing the entire image, see if the number of pixel failures meets the // threshold for an FP violating the optimization requirements. if (failedPixelCount > kMaxAcceptableFailedPixels) { ERRORF(reporter, "Processor violated %d of %d pixels, seed: 0x%08x.\n" "Processor:\n%s\nFirst failing pixel details are below:", failedPixelCount, kRenderSize * kRenderSize, fpGenerator.initialSeed(), fp->dumpTreeInfo().c_str()); // Print first failing pixel's details. if (!coverageMessage.isEmpty()) { ERRORF(reporter, coverageMessage.c_str()); } if (!constMessage.isEmpty()) { ERRORF(reporter, constMessage.c_str()); } if (!opaqueMessage.isEmpty()) { ERRORF(reporter, opaqueMessage.c_str()); } if (!loggedFirstFailure) { // Print with ERRORF to make sure the encoded image is output SkString input; log_texture_view(context, inputTexture1, &input); SkString output; log_pixels(readData1.data(), kRenderSize, &output); ERRORF(reporter, "Input image: %s\n\n" "===========================================================\n\n" "Output image: %s\n", input.c_str(), output.c_str()); loggedFirstFailure = true; } } else if (failedPixelCount > 0) { // Don't trigger an error, but don't just hide the failures either. INFOF(reporter, "Processor violated %d of %d pixels (below error threshold), seed: " "0x%08x, processor: %s", failedPixelCount, kRenderSize * kRenderSize, fpGenerator.initialSeed(), fp->dumpInfo().c_str()); if (!coverageMessage.isEmpty()) { INFOF(reporter, coverageMessage.c_str()); } if (!constMessage.isEmpty()) { INFOF(reporter, constMessage.c_str()); } if (!opaqueMessage.isEmpty()) { INFOF(reporter, opaqueMessage.c_str()); } if (!loggedFirstWarning) { SkString input; log_texture_view(context, inputTexture1, &input); SkString output; log_pixels(readData1.data(), kRenderSize, &output); INFOF(reporter, "Input image: %s\n\n" "===========================================================\n\n" "Output image: %s\n", input.c_str(), output.c_str()); loggedFirstWarning = true; } } } } } static void assert_processor_equality(skiatest::Reporter* reporter, const GrFragmentProcessor& fp, const GrFragmentProcessor& clone) { REPORTER_ASSERT(reporter, !strcmp(fp.name(), clone.name()), "\n%s", fp.dumpTreeInfo().c_str()); REPORTER_ASSERT(reporter, fp.compatibleWithCoverageAsAlpha() == clone.compatibleWithCoverageAsAlpha(), "\n%s", fp.dumpTreeInfo().c_str()); REPORTER_ASSERT(reporter, fp.isEqual(clone), "\n%s", fp.dumpTreeInfo().c_str()); REPORTER_ASSERT(reporter, fp.preservesOpaqueInput() == clone.preservesOpaqueInput(), "\n%s", fp.dumpTreeInfo().c_str()); REPORTER_ASSERT(reporter, fp.hasConstantOutputForConstantInput() == clone.hasConstantOutputForConstantInput(), "\n%s", fp.dumpTreeInfo().c_str()); REPORTER_ASSERT(reporter, fp.numChildProcessors() == clone.numChildProcessors(), "\n%s", fp.dumpTreeInfo().c_str()); REPORTER_ASSERT(reporter, fp.usesVaryingCoords() == clone.usesVaryingCoords(), "\n%s", fp.dumpTreeInfo().c_str()); REPORTER_ASSERT(reporter, fp.referencesSampleCoords() == clone.referencesSampleCoords(), "\n%s", fp.dumpTreeInfo().c_str()); } static bool verify_identical_render(skiatest::Reporter* reporter, int renderSize, const char* processorType, const GrColor readData1[], const GrColor readData2[]) { // The ProcessorClone test has a history of being flaky on a number of devices. If an FP clone // is logically wrong, it's reasonable to expect it produce a large number of pixel differences // in the image. Sporadic pixel violations are more indicative device errors and represents a // separate problem. #if defined(SK_BUILD_FOR_SKQP) const int maxAcceptableFailedPixels = 0; // Strict when running as SKQP #else const int maxAcceptableFailedPixels = 2 * renderSize; // ~0.002% of the pixels (size 1024*1024) #endif int failedPixelCount = 0; int firstWrongX = 0; int firstWrongY = 0; int idx = 0; for (int y = 0; y < renderSize; ++y) { for (int x = 0; x < renderSize; ++x, ++idx) { if (readData1[idx] != readData2[idx]) { if (!failedPixelCount) { firstWrongX = x; firstWrongY = y; } ++failedPixelCount; } if (failedPixelCount > maxAcceptableFailedPixels) { idx = firstWrongY * renderSize + firstWrongX; ERRORF(reporter, "%s produced different output at (%d, %d). " "Input color: 0x%08x, Original Output Color: 0x%08x, " "Clone Output Color: 0x%08x.", processorType, firstWrongX, firstWrongY, input_texel_color(x, y, 0.0f), readData1[idx], readData2[idx]); return false; } } } return true; } static void log_clone_failure(skiatest::Reporter* reporter, int renderSize, GrDirectContext* context, const GrSurfaceProxyView& inputTexture, GrColor pixelsFP[], GrColor pixelsClone[], GrColor pixelsRegen[]) { // Write the images out as data URLs for inspection. SkString inputURL, origURL, cloneURL, regenURL; if (log_texture_view(context, inputTexture, &inputURL) && log_pixels(pixelsFP, renderSize, &origURL) && log_pixels(pixelsClone, renderSize, &cloneURL) && log_pixels(pixelsRegen, renderSize, ®enURL)) { ERRORF(reporter, "\nInput image:\n%s\n\n" "===========================================================" "\n\n" "Orig output image:\n%s\n" "===========================================================" "\n\n" "Clone output image:\n%s\n" "===========================================================" "\n\n" "Regen output image:\n%s\n", inputURL.c_str(), origURL.c_str(), cloneURL.c_str(), regenURL.c_str()); } } // Tests that a fragment processor returned by GrFragmentProcessor::clone() is equivalent to its // progenitor. DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(ProcessorCloneTest, reporter, ctxInfo) { GrDirectContext* context = ctxInfo.directContext(); GrResourceProvider* resourceProvider = context->priv().resourceProvider(); TestFPGenerator fpGenerator{context, resourceProvider}; if (!fpGenerator.init()) { ERRORF(reporter, "Could not initialize TestFPGenerator"); return; } // Make the destination context for the test. static constexpr int kRenderSize = 1024; auto rtc = GrSurfaceDrawContext::Make( context, GrColorType::kRGBA_8888, nullptr, SkBackingFit::kExact, {kRenderSize, kRenderSize}, SkSurfaceProps()); std::vector inputPixels = make_input_pixels(kRenderSize, kRenderSize, 0.0f); GrSurfaceProxyView inputTexture = make_input_texture(context, kRenderSize, kRenderSize, inputPixels.data()); // On failure we write out images, but just write the first failing set as the print is very // large. bool loggedFirstFailure = false; // Storage for the original frame's readback and the readback of its clone. std::vector readDataFP(kRenderSize * kRenderSize); std::vector readDataClone(kRenderSize * kRenderSize); std::vector readDataRegen(kRenderSize * kRenderSize); // Because processor factories configure themselves in random ways, this is not exhaustive. for (int i = 0; i < GrFragmentProcessorTestFactory::Count(); ++i) { static constexpr int kTimesToInvokeFactory = 10; for (int j = 0; j < kTimesToInvokeFactory; ++j) { fpGenerator.reroll(); std::unique_ptr fp = fpGenerator.make(i, /*randomTreeDepth=*/1, /*inputFP=*/nullptr); std::unique_ptr regen = fpGenerator.make(i, /*randomTreeDepth=*/1, /*inputFP=*/nullptr); std::unique_ptr clone = fp->clone(); if (!clone) { ERRORF(reporter, "Clone of processor %s failed.", fp->dumpTreeInfo().c_str()); continue; } assert_processor_equality(reporter, *fp, *clone); // Draw with original and read back the results. render_fp(context, rtc.get(), std::move(fp), readDataFP.data()); // Draw with clone and read back the results. render_fp(context, rtc.get(), std::move(clone), readDataClone.data()); // Check that the results are the same. if (!verify_identical_render(reporter, kRenderSize, "Processor clone", readDataFP.data(), readDataClone.data())) { // Dump a description from the regenerated processor (since the original FP has // already been consumed). ERRORF(reporter, "FP hierarchy:\n%s", regen->dumpTreeInfo().c_str()); // Render and readback output from the regenerated FP. If this also mismatches, the // FP itself doesn't generate consistent output. This could happen if: // - the FP's TestCreate() does not always generate the same FP from a given seed // - the FP's Make() does not always generate the same FP when given the same inputs // - the FP itself generates inconsistent pixels (shader UB?) // - the driver has a bug render_fp(context, rtc.get(), std::move(regen), readDataRegen.data()); if (!verify_identical_render(reporter, kRenderSize, "Regenerated processor", readDataFP.data(), readDataRegen.data())) { ERRORF(reporter, "Output from regen did not match original!\n"); } else { ERRORF(reporter, "Regenerated processor output matches original results.\n"); } // If this is the first time we've encountered a cloning failure, log the generated // images to the reporter as data URLs. if (!loggedFirstFailure) { log_clone_failure(reporter, kRenderSize, context, inputTexture, readDataFP.data(), readDataClone.data(), readDataRegen.data()); loggedFirstFailure = true; } } } } } #endif // GR_TEST_UTILS