// Copyright 2020 The SwiftShader Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package cov import ( "log" "sort" "sync" ) // Optimize optimizes the Tree by de-duplicating common spans into a tree of // SpanGroups. func (t *Tree) Optimize() { log.Printf("Optimizing coverage tree...") // Start by gathering all of the unique spansets wg := sync.WaitGroup{} wg.Add(len(t.files)) for _, file := range t.files { file := file go func() { defer wg.Done() o := optimizer{} for idx, tc := range file.tcm { o.invertForCommon(tc, &t.testRoot.children[idx]) } o.createGroups(file) }() } wg.Wait() } type optimizer struct{} // createGroups looks for common SpanSets, and creates indexable span groups // which are then used instead. func (o *optimizer) createGroups(f *treeFile) { const minSpansInGroup = 2 type spansetKey string spansetMap := map[spansetKey]SpanSet{} f.tcm.traverse(func(tc *TestCoverage) { if len(tc.Spans) >= minSpansInGroup { key := spansetKey(tc.Spans.String()) if _, ok := spansetMap[key]; !ok { spansetMap[key] = tc.Spans } } }) if len(spansetMap) == 0 { return } type spansetInfo struct { key spansetKey set SpanSet // fully expanded set grp SpanGroup id SpanGroupID } spansets := make([]*spansetInfo, 0, len(spansetMap)) for key, set := range spansetMap { spansets = append(spansets, &spansetInfo{ key: key, set: set, grp: SpanGroup{Spans: set}, }) } // Sort by number of spans in each sets starting with the largest. sort.Slice(spansets, func(i, j int) bool { a, b := spansets[i].set, spansets[j].set switch { case len(a) > len(b): return true case len(a) < len(b): return false } return a.List().Compare(b.List()) == -1 // Just to keep output stable }) // Assign IDs now that we have stable order. for i := range spansets { spansets[i].id = SpanGroupID(i) } // Loop over the spanGroups starting from the largest, and try to fold them // into the larger sets. // This is O(n^2) complexity. nextSpan: for i, a := range spansets[:len(spansets)-1] { for _, b := range spansets[i+1:] { if len(a.set) > len(b.set) && a.set.containsAll(b.set) { extend := b.id // Do not take address of iterator! a.grp.Spans = a.set.removeAll(b.set) a.grp.Extend = &extend continue nextSpan } } } // Rebuild a map of spansetKey to SpanGroup spangroupMap := make(map[spansetKey]*spansetInfo, len(spansets)) for _, s := range spansets { spangroupMap[s.key] = s } // Store the groups in the tree f.spangroups = make(map[SpanGroupID]SpanGroup, len(spansets)) for _, s := range spansets { f.spangroups[s.id] = s.grp } // Update all the uses. f.tcm.traverse(func(tc *TestCoverage) { key := spansetKey(tc.Spans.String()) if g, ok := spangroupMap[key]; ok { tc.Spans = nil tc.Group = &g.id } }) } // invertCommon looks for tree nodes with the majority of the child nodes with // the same spans. This span is promoted up to the parent, and the children // have the span inverted. func (o *optimizer) invertForCommon(tc *TestCoverage, t *Test) { wg := sync.WaitGroup{} wg.Add(len(tc.Children)) for id, child := range tc.Children { id, child := id, child go func() { defer wg.Done() o.invertForCommon(child, &t.children[id]) }() } wg.Wait() counts := map[SpanID]int{} for _, child := range tc.Children { for span := range child.Spans { counts[span] = counts[span] + 1 } } for span, count := range counts { if count > len(t.children)/2 { tc.Spans = tc.Spans.invert(span) for _, idx := range t.indices { child := tc.Children.index(idx) child.Spans = child.Spans.invert(span) if child.deletable() { delete(tc.Children, idx) } } } } }