/* * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/video_coding/timing.h" #include "system_wrappers/include/clock.h" #include "test/gtest.h" namespace webrtc { namespace { const int kFps = 25; } // namespace TEST(ReceiverTiming, Tests) { SimulatedClock clock(0); VCMTiming timing(&clock); timing.Reset(); uint32_t timestamp = 0; timing.UpdateCurrentDelay(timestamp); timing.Reset(); timing.IncomingTimestamp(timestamp, clock.TimeInMilliseconds()); uint32_t jitter_delay_ms = 20; timing.SetJitterDelay(jitter_delay_ms); timing.UpdateCurrentDelay(timestamp); timing.set_render_delay(0); uint32_t wait_time_ms = timing.MaxWaitingTime( timing.RenderTimeMs(timestamp, clock.TimeInMilliseconds()), clock.TimeInMilliseconds()); // First update initializes the render time. Since we have no decode delay // we get wait_time_ms = renderTime - now - renderDelay = jitter. EXPECT_EQ(jitter_delay_ms, wait_time_ms); jitter_delay_ms += VCMTiming::kDelayMaxChangeMsPerS + 10; timestamp += 90000; clock.AdvanceTimeMilliseconds(1000); timing.SetJitterDelay(jitter_delay_ms); timing.UpdateCurrentDelay(timestamp); wait_time_ms = timing.MaxWaitingTime( timing.RenderTimeMs(timestamp, clock.TimeInMilliseconds()), clock.TimeInMilliseconds()); // Since we gradually increase the delay we only get 100 ms every second. EXPECT_EQ(jitter_delay_ms - 10, wait_time_ms); timestamp += 90000; clock.AdvanceTimeMilliseconds(1000); timing.UpdateCurrentDelay(timestamp); wait_time_ms = timing.MaxWaitingTime( timing.RenderTimeMs(timestamp, clock.TimeInMilliseconds()), clock.TimeInMilliseconds()); EXPECT_EQ(jitter_delay_ms, wait_time_ms); // Insert frames without jitter, verify that this gives the exact wait time. const int kNumFrames = 300; for (int i = 0; i < kNumFrames; i++) { clock.AdvanceTimeMilliseconds(1000 / kFps); timestamp += 90000 / kFps; timing.IncomingTimestamp(timestamp, clock.TimeInMilliseconds()); } timing.UpdateCurrentDelay(timestamp); wait_time_ms = timing.MaxWaitingTime( timing.RenderTimeMs(timestamp, clock.TimeInMilliseconds()), clock.TimeInMilliseconds()); EXPECT_EQ(jitter_delay_ms, wait_time_ms); // Add decode time estimates for 1 second. const uint32_t kDecodeTimeMs = 10; for (int i = 0; i < kFps; i++) { clock.AdvanceTimeMilliseconds(kDecodeTimeMs); timing.StopDecodeTimer(kDecodeTimeMs, clock.TimeInMilliseconds()); timestamp += 90000 / kFps; clock.AdvanceTimeMilliseconds(1000 / kFps - kDecodeTimeMs); timing.IncomingTimestamp(timestamp, clock.TimeInMilliseconds()); } timing.UpdateCurrentDelay(timestamp); wait_time_ms = timing.MaxWaitingTime( timing.RenderTimeMs(timestamp, clock.TimeInMilliseconds()), clock.TimeInMilliseconds()); EXPECT_EQ(jitter_delay_ms, wait_time_ms); const int kMinTotalDelayMs = 200; timing.set_min_playout_delay(kMinTotalDelayMs); clock.AdvanceTimeMilliseconds(5000); timestamp += 5 * 90000; timing.UpdateCurrentDelay(timestamp); const int kRenderDelayMs = 10; timing.set_render_delay(kRenderDelayMs); wait_time_ms = timing.MaxWaitingTime( timing.RenderTimeMs(timestamp, clock.TimeInMilliseconds()), clock.TimeInMilliseconds()); // We should at least have kMinTotalDelayMs - decodeTime (10) - renderTime // (10) to wait. EXPECT_EQ(kMinTotalDelayMs - kDecodeTimeMs - kRenderDelayMs, wait_time_ms); // The total video delay should be equal to the min total delay. EXPECT_EQ(kMinTotalDelayMs, timing.TargetVideoDelay()); // Reset playout delay. timing.set_min_playout_delay(0); clock.AdvanceTimeMilliseconds(5000); timestamp += 5 * 90000; timing.UpdateCurrentDelay(timestamp); } TEST(ReceiverTiming, WrapAround) { SimulatedClock clock(0); VCMTiming timing(&clock); // Provoke a wrap-around. The fifth frame will have wrapped at 25 fps. uint32_t timestamp = 0xFFFFFFFFu - 3 * 90000 / kFps; for (int i = 0; i < 5; ++i) { timing.IncomingTimestamp(timestamp, clock.TimeInMilliseconds()); clock.AdvanceTimeMilliseconds(1000 / kFps); timestamp += 90000 / kFps; EXPECT_EQ(3 * 1000 / kFps, timing.RenderTimeMs(0xFFFFFFFFu, clock.TimeInMilliseconds())); EXPECT_EQ(3 * 1000 / kFps + 1, timing.RenderTimeMs(89u, // One ms later in 90 kHz. clock.TimeInMilliseconds())); } } } // namespace webrtc