/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // This file contains pre-canonical-types utility code and does not includes HAL // utilities. LegacyHalUtils.h is a superset of these utilities that includes // HAL utilities. #ifndef ANDROID_FRAMEWORKS_ML_NN_COMMON_LEGACY_UTILS_H #define ANDROID_FRAMEWORKS_ML_NN_COMMON_LEGACY_UTILS_H #include #include #include #include #include #include #include #include "NeuralNetworks.h" #include "OperationResolver.h" #include "nnapi/TypeUtils.h" #include "nnapi/Types.h" namespace android { namespace nn { // The number of data types (OperandCode) defined in NeuralNetworks.h. const int kNumberOfDataTypes = 16; // The number of operation types (OperationCode) defined in NeuralNetworks.h. const int kNumberOfOperationTypes = 102; static_assert(kNumberOfOperationTypes == BuiltinOperationResolver::kNumberOfOperationTypes); // The number of execution preferences defined in NeuralNetworks.h. const int kNumberOfPreferences = 3; // The number of data types (OperandCode) defined in NeuralNetworksOEM.h. const int kNumberOfDataTypesOEM = 2; // The number of operation types (OperationCode) defined in NeuralNetworksOEM.h. const int kNumberOfOperationTypesOEM = 1; // The lowest number assigned to any OEM Code in NeuralNetworksOEM.h. const int kOEMCodeBase = 10000; /* IMPORTANT: if you change the following list, don't * forget to update the corresponding 'tags' table in * the initVlogMask() function implemented in Utils.cpp. */ enum VLogFlags { MODEL = 0, COMPILATION, EXECUTION, CPUEXE, MANAGER, DRIVER, MEMORY }; #define VLOG_IS_ON(TAG) ((vLogMask & (1 << (TAG))) != 0) #define VLOG(TAG) \ if (LIKELY(!VLOG_IS_ON(TAG))) \ ; \ else \ LOG(INFO) extern int vLogMask; void initVLogMask(); #ifdef NN_DEBUGGABLE #define SHOW_IF_DEBUG(msg) msg #else #define SHOW_IF_DEBUG(msg) "" #endif // DEPRECATED(b/118737105). Use CHECK. #define nnAssert(v) CHECK(v) #define NN_RETURN_IF_ERROR(expr) \ do { \ int _errorCode = (expr); \ if (_errorCode != ANEURALNETWORKS_NO_ERROR) { \ return _errorCode; \ } \ } while (0) // Make a Duration from a duration in nanoseconds. If the value exceeds the max duration, return the // maximum expressible duration. Duration makeTimeoutDuration(uint64_t nanoseconds); // Make a Duration from a duration in nanoseconds. If the value exceeds the max duration, return the // maximum expressible duration. If nanoseconds == -1, the duration is omitted. Precondition: // nanoseconds >= -1 OptionalDuration makeTimeoutDuration(int64_t nanoseconds); // Make a deadline from a duration. If the sum of the current time and the // duration exceeds the max time, return a time point holding the maximum // expressible time. TimePoint makeDeadline(Duration duration); inline TimePoint makeDeadline(uint64_t duration) { return makeDeadline(makeTimeoutDuration(duration)); } // Convenience function. If the duration is provided, this function creates a // deadline using makeDeadline. If the duration is not provided, this function // returns std::nullopt. inline OptionalTimePoint makeDeadline(OptionalDuration duration) { return duration.has_value() ? std::make_optional(makeDeadline(*duration)) : OptionalTimePoint{}; } inline OptionalTimePoint makeDeadline(std::optional duration) { return duration.has_value() ? std::make_optional(makeDeadline(*duration)) : OptionalTimePoint{}; } inline OptionalTimePoint makeDeadline(int64_t duration) { return makeDeadline(makeTimeoutDuration(duration)); } // Returns true if the deadline has passed. Returns false if either the deadline // has not been exceeded or if the deadline is not present. bool hasDeadlinePassed(const OptionalTimePoint& deadline); // Returns true if an operand type is an extension type. bool isExtensionOperandType(OperandType type); // Returns true if an operation type is an extension type. bool isExtensionOperationType(OperationType type); // Returns the amount of space needed to store a value of the specified // dimensions and type. For a tensor with unspecified rank or at least one // unspecified dimension, returns zero. // // Aborts if the specified type is an extension type. // Aborts if the size would overflow the return type. // // See also TypeManager::getSizeOfData(OperandType, const std::vector&). uint32_t nonExtensionOperandSizeOfData(OperandType type, const std::vector& dimensions); // Returns the amount of space needed to store a value of the dimensions and // type of this operand. For a tensor with unspecified rank or at least one // unspecified dimension, returns zero. // // Aborts if the specified type is an extension type. // Aborts if the size would overflow the return type. // // See also TypeManager::getSizeOfData(const Operand&). inline uint32_t nonExtensionOperandSizeOfData(const Operand& operand) { return nonExtensionOperandSizeOfData(operand.type, operand.dimensions); } // Returns the amount of space needed to store a value of the specified // dimensions and element size. For a tensor with unspecified rank or at least // one unspecified dimension, returns zero. // // Aborts if the size would overflow the return type. // // See also TypeManager::getSizeOfData(const Operand&). uint32_t sizeOfTensorData(uint32_t sizeOfElement, const std::vector& dimensions); // Returns true if the amount of space needed to store a value of the specified // dimensions and element size overflows the uint32_t type. // // Aborts if the specified type is an extension type. // // See also TypeManager::sizeOfDataOverflowsUInt32(OperandType, const std::vector&). bool nonExtensionOperandSizeOfDataOverflowsUInt32(OperandType type, const std::vector& dimensions); // Returns true if the amount of space needed to store a value of the specified // dimensions and element size overflows the uint32_t type. // // See also TypeManager::sizeOfDataOverflowsUInt32(OperandType, const std::vector&). bool sizeOfTensorDataOverflowsUInt32(uint32_t elementSize, const std::vector& dimensions); // Returns true if a non-extension operand type is a scalar type. // // Aborts if the specified type is an extension type. // // See also TypeManager::isTensorType(OperandType). bool nonExtensionOperandTypeIsScalar(int type); // Whether an operand of tensor type has unspecified dimensions. // // Undefined behavior if the operand type is a scalar type. bool tensorHasUnspecifiedDimensions(int type, const uint32_t* dim, uint32_t dimCount); bool tensorHasUnspecifiedDimensions(OperandType type, const std::vector& dimensions); bool tensorHasUnspecifiedDimensions(OperandType type, const Dimensions& dimensions); bool tensorHasUnspecifiedDimensions(const Operand& operand); bool tensorHasUnspecifiedDimensions(const ANeuralNetworksOperandType* type); // Returns the number of padding bytes needed to align data starting at `index` with `length` number // of bytes such that `index` + returned number of padding bytes is aligned. Refer to // `getAlignmentForLength` for more information on alignment (such as what the current alignments // are for different data lengths). uint32_t alignBytesNeeded(uint32_t index, size_t length); // Does a detailed LOG(INFO) of the model void logModelToInfo(const Model& model); inline std::string toString(uint32_t obj) { return std::to_string(obj); } template std::string toString(const std::vector& range) { std::string os = "["; for (size_t i = 0; i < range.size(); ++i) { os += (i == 0 ? "" : ", ") + toString(range[i]); } return os += "]"; } template std::string toString(const std::pair& pair) { std::ostringstream oss; oss << "(" << pair.first << ", " << pair.second << ")"; return oss.str(); } inline bool validCode(uint32_t codeCount, uint32_t codeCountOEM, uint32_t code) { return (code < codeCount) || (code >= kOEMCodeBase && (code - kOEMCodeBase) < codeCountOEM); } // Validates an operand type. // // extensionOperandTypeInfo must be nullptr iff the type is not an extension type. // // If allowPartial is true, the dimensions may be underspecified. int validateOperandType(const ANeuralNetworksOperandType& type, const Extension::OperandTypeInformation* const extensionOperandTypeInfo, const char* tag, bool allowPartial); int validateOperandList(uint32_t count, const uint32_t* list, uint32_t operandCount, const char* tag); // A set of functions to help validate models containing IF or WHILE operations. struct SubgraphValidationHelper { // Checks if a given operand is a SUBGRAPH operand with a valid offset. std::function isValidSubgraphReference; // Gets the input count of a subgraph referenced by a given operand. std::function getSubgraphInputCount; // Gets the output count of a subgraph referenced by a given operand. std::function getSubgraphOutputCount; // Gets the specified input operand of a subgraph referenced by a given operand. std::function getSubgraphInputOperand; // Gets the specified output operand of a subgraph referenced by a given operand. std::function getSubgraphOutputOperand; // Whether control flow operations with inner or outer input or output // operands of unknown size are allowed. bool allowControlFlowOperationWithOperandOfUnknownSize; }; // Returns ANEURALNETWORKS_NO_ERROR if the corresponding operation is defined and can handle the // provided operand types in the given HAL version, otherwise returns ANEURALNETWORKS_BAD_DATA. // The last argument is only used for validating IF and WHILE operations. int validateOperation(ANeuralNetworksOperationType opType, uint32_t inputCount, const uint32_t* inputIndexes, uint32_t outputCount, const uint32_t* outputIndexes, const std::vector& operands, HalVersion halVersion, const SubgraphValidationHelper& helper); inline size_t getSizeFromInts(int lower, int higher) { return (uint32_t)(lower) + ((uint64_t)(uint32_t)(higher) << 32); } // Convert ANEURALNETWORKS_* result code to ErrorStatus. // Not guaranteed to be a 1-to-1 mapping. ErrorStatus convertResultCodeToErrorStatus(int resultCode); // Convert ErrorStatus to ANEURALNETWORKS_* result code. // Not guaranteed to be a 1-to-1 mapping. int convertErrorStatusToResultCode(ErrorStatus status); // Convert execution results to runtime format. Additionally checks that the // returned results abide by the HAL specification, and logs an error if the // result violates the specification. std::tuple, Timing> getExecutionResult( ErrorStatus status, std::vector outputShapes, Timing timing); constexpr Priority convertToCanonicalPriority(int32_t priority) { switch (priority) { case ANEURALNETWORKS_PRIORITY_LOW: return Priority::LOW; case ANEURALNETWORKS_PRIORITY_MEDIUM: return Priority::MEDIUM; case ANEURALNETWORKS_PRIORITY_HIGH: return Priority::HIGH; } LOG(FATAL) << "unrecognized priority: " << priority; return {}; } // The function syncWait() has the same semantics as the system function // ::sync_wait(), except that the syncWait() return value is semantically // richer. The timeout parameter is in msecs. enum class FenceState { ACTIVE, // fence has not been signaled SIGNALED, // fence has been signaled ERROR, // fence has been placed in the error state UNKNOWN, // either bad argument passed to syncWait(), or internal error }; FenceState syncWait(int fd, int timeout); #ifdef NN_DEBUGGABLE uint32_t getProp(const char* str, uint32_t defaultValue = 0); #endif // NN_DEBUGGABLE struct ApiVersion { Version canonical; int64_t featureLevel; }; constexpr auto kHalVersionV1_0ToApi = ApiVersion{.canonical = Version::ANDROID_OC_MR1, .featureLevel = ANEURALNETWORKS_FEATURE_LEVEL_1}; constexpr auto kHalVersionV1_1ToApi = ApiVersion{.canonical = Version::ANDROID_P, .featureLevel = ANEURALNETWORKS_FEATURE_LEVEL_2}; constexpr auto kHalVersionV1_2ToApi = ApiVersion{.canonical = Version::ANDROID_Q, .featureLevel = ANEURALNETWORKS_FEATURE_LEVEL_3}; constexpr auto kHalVersionV1_3ToApi = ApiVersion{.canonical = Version::ANDROID_R, .featureLevel = ANEURALNETWORKS_FEATURE_LEVEL_4}; } // namespace nn } // namespace android #endif // ANDROID_FRAMEWORKS_ML_NN_COMMON_LEGACY_UTILS_H