/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include "Check.h" #include "Symbols.h" namespace unwindstack { Symbols::Symbols(uint64_t offset, uint64_t size, uint64_t entry_size, uint64_t str_offset, uint64_t str_size) : offset_(offset), count_(entry_size != 0 ? size / entry_size : 0), entry_size_(entry_size), str_offset_(str_offset), str_end_(str_offset_ + str_size) {} template static bool IsFunc(const SymType* entry) { return entry->st_shndx != SHN_UNDEF && ELF32_ST_TYPE(entry->st_info) == STT_FUNC; } // Binary search the symbol table to find function containing the given address. // Without remap, the symbol table is assumed to be sorted and accessed directly. // If the symbol table is not sorted this method might fail but should not crash. // When the indices are remapped, they are guaranteed to be sorted by address. template Symbols::Info* Symbols::BinarySearch(uint64_t addr, Memory* elf_memory, uint64_t* func_offset) { // Fast-path: Check if the symbol has been already read from memory. // Otherwise use the cache iterator to constrain the binary search range. // (the symbol must be in the gap between this and the previous iterator) auto it = symbols_.upper_bound(addr); if (it != symbols_.end()) { uint64_t sym_value = (it->first - it->second.size); // Function address. if (sym_value <= addr) { *func_offset = addr - sym_value; return &it->second; } } uint32_t count = RemapIndices ? remap_->size() : count_; uint32_t last = (it != symbols_.end()) ? it->second.index : count; uint32_t first = (it != symbols_.begin()) ? std::prev(it)->second.index + 1 : 0; while (first < last) { uint32_t current = first + (last - first) / 2; uint32_t symbol_index = RemapIndices ? remap_.value()[current] : current; SymType sym; if (!elf_memory->ReadFully(offset_ + symbol_index * entry_size_, &sym, sizeof(sym))) { return nullptr; } // There shouldn't be multiple symbols with same end address, but in case there are, // overwrite the cache with the last entry, so that 'sym' and 'info' are consistent. Info& info = symbols_[sym.st_value + sym.st_size]; info = {.size = static_cast(sym.st_size), .index = current}; if (addr < sym.st_value) { last = current; } else if (addr < sym.st_value + sym.st_size) { *func_offset = addr - sym.st_value; return &info; } else { first = current + 1; } } return nullptr; } // Create remapping table which allows us to access symbols as if they were sorted by address. template void Symbols::BuildRemapTable(Memory* elf_memory) { std::vector addrs; // Addresses of all symbols (addrs[i] == symbols[i].st_value). addrs.reserve(count_); remap_.emplace(); // Construct the optional remap table. remap_->reserve(count_); for (size_t symbol_idx = 0; symbol_idx < count_;) { // Read symbols from memory. We intentionally bypass the cache to save memory. // Do the reads in batches so that we minimize the number of memory read calls. uint8_t buffer[1024]; size_t read = std::min(sizeof(buffer), (count_ - symbol_idx) * entry_size_); size_t size = elf_memory->Read(offset_ + symbol_idx * entry_size_, buffer, read); if (size < sizeof(SymType)) { break; // Stop processing, something looks like it is corrupted. } for (size_t offset = 0; offset + sizeof(SymType) <= size; offset += entry_size_, symbol_idx++) { SymType sym; memcpy(&sym, &buffer[offset], sizeof(SymType)); // Copy to ensure alignment. addrs.push_back(sym.st_value); // Always insert so it is indexable by symbol index. // NB: It is important to filter our zero-sized symbols since otherwise we can get // duplicate end addresses in the table (e.g. if there is custom "end" symbol marker). if (IsFunc(&sym) && sym.st_size != 0) { remap_->push_back(symbol_idx); // Indices of function symbols only. } } } // Sort by address to make the remap list binary searchable (stable due to the abegin(), remap_->end(), comp); // Remove duplicate entries (methods de-duplicated by the linker). auto pred = [&addrs](auto a, auto b) { return addrs[a] == addrs[b]; }; remap_->erase(std::unique(remap_->begin(), remap_->end(), pred), remap_->end()); remap_->shrink_to_fit(); } template bool Symbols::GetName(uint64_t addr, Memory* elf_memory, SharedString* name, uint64_t* func_offset) { Info* info; if (!remap_.has_value()) { // Assume the symbol table is sorted. If it is not, this will gracefully fail. info = BinarySearch(addr, elf_memory, func_offset); if (info == nullptr) { // Create the remapping table and retry the search. BuildRemapTable(elf_memory); symbols_.clear(); // Remove cached symbols since the access pattern will be different. info = BinarySearch(addr, elf_memory, func_offset); } } else { // Fast search using the previously created remap table. info = BinarySearch(addr, elf_memory, func_offset); } if (info == nullptr) { return false; } // Read and cache the symbol name. if (info->name.is_null()) { SymType sym; uint32_t symbol_index = remap_.has_value() ? remap_.value()[info->index] : info->index; if (!elf_memory->ReadFully(offset_ + symbol_index * entry_size_, &sym, sizeof(sym))) { return false; } std::string symbol_name; uint64_t str; if (__builtin_add_overflow(str_offset_, sym.st_name, &str) || str >= str_end_) { return false; } if (!IsFunc(&sym) || !elf_memory->ReadString(str, &symbol_name, str_end_ - str)) { return false; } info->name = SharedString(std::move(symbol_name)); } *name = info->name; return true; } template bool Symbols::GetGlobal(Memory* elf_memory, const std::string& name, uint64_t* memory_address) { // Lookup from cache. auto it = global_variables_.find(name); if (it != global_variables_.end()) { if (it->second.has_value()) { *memory_address = it->second.value(); return true; } return false; } // Linear scan of all symbols. for (uint32_t i = 0; i < count_; i++) { SymType entry; if (!elf_memory->ReadFully(offset_ + i * entry_size_, &entry, sizeof(entry))) { return false; } if (entry.st_shndx != SHN_UNDEF && ELF32_ST_TYPE(entry.st_info) == STT_OBJECT && ELF32_ST_BIND(entry.st_info) == STB_GLOBAL) { uint64_t str_offset = str_offset_ + entry.st_name; if (str_offset < str_end_) { std::string symbol; if (elf_memory->ReadString(str_offset, &symbol, str_end_ - str_offset) && symbol == name) { global_variables_.emplace(name, entry.st_value); *memory_address = entry.st_value; return true; } } } } global_variables_.emplace(name, std::optional()); // Remember "not found" outcome. return false; } // Instantiate all of the needed template functions. template bool Symbols::GetName(uint64_t, Memory*, SharedString*, uint64_t*); template bool Symbols::GetName(uint64_t, Memory*, SharedString*, uint64_t*); template bool Symbols::GetGlobal(Memory*, const std::string&, uint64_t*); template bool Symbols::GetGlobal(Memory*, const std::string&, uint64_t*); } // namespace unwindstack