/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "KeyUtil.h" #include #include #include #include #include #include #include #include #include #include #include #include #include "KeyStorage.h" #include "Utils.h" namespace android { namespace vold { // This must be acquired before calling fscrypt ioctls that operate on keys. // This prevents race conditions between evicting and reinstalling keys. static std::mutex fscrypt_keyring_mutex; const KeyGeneration neverGen() { return KeyGeneration{0, false, false}; } static bool randomKey(size_t size, KeyBuffer* key) { *key = KeyBuffer(size); if (ReadRandomBytes(key->size(), key->data()) != 0) { // TODO status_t plays badly with PLOG, fix it. LOG(ERROR) << "Random read failed"; return false; } return true; } bool generateStorageKey(const KeyGeneration& gen, KeyBuffer* key) { if (!gen.allow_gen) return false; if (gen.use_hw_wrapped_key) { if (gen.keysize != FSCRYPT_MAX_KEY_SIZE) { LOG(ERROR) << "Cannot generate a wrapped key " << gen.keysize << " bytes long"; return false; } LOG(DEBUG) << "Generating wrapped storage key"; return generateWrappedStorageKey(key); } else { LOG(DEBUG) << "Generating standard storage key"; return randomKey(gen.keysize, key); } } static bool isFsKeyringSupportedImpl() { android::base::unique_fd fd(open("/data", O_RDONLY | O_DIRECTORY | O_CLOEXEC)); // FS_IOC_ADD_ENCRYPTION_KEY with a NULL argument will fail with ENOTTY if // the ioctl isn't supported. Otherwise it will fail with another error // code such as EFAULT. // // Note that there's no need to check for FS_IOC_REMOVE_ENCRYPTION_KEY, // since it's guaranteed to be available if FS_IOC_ADD_ENCRYPTION_KEY is. // There's also no need to check for support on external volumes separately // from /data, since either the kernel supports the ioctls on all // fscrypt-capable filesystems or it doesn't. errno = 0; (void)ioctl(fd, FS_IOC_ADD_ENCRYPTION_KEY, NULL); if (errno == ENOTTY) { LOG(INFO) << "Kernel doesn't support FS_IOC_ADD_ENCRYPTION_KEY. Falling back to " "session keyring"; return false; } if (errno != EFAULT) { PLOG(WARNING) << "Unexpected error from FS_IOC_ADD_ENCRYPTION_KEY"; } LOG(DEBUG) << "Detected support for FS_IOC_ADD_ENCRYPTION_KEY"; android::base::SetProperty("ro.crypto.uses_fs_ioc_add_encryption_key", "true"); return true; } // Return true if the kernel supports the ioctls to add/remove fscrypt keys // directly to/from the filesystem. bool isFsKeyringSupported(void) { static bool supported = isFsKeyringSupportedImpl(); return supported; } // Get raw keyref - used to make keyname and to pass to ioctl static std::string generateKeyRef(const uint8_t* key, int length) { SHA512_CTX c; SHA512_Init(&c); SHA512_Update(&c, key, length); unsigned char key_ref1[SHA512_DIGEST_LENGTH]; SHA512_Final(key_ref1, &c); SHA512_Init(&c); SHA512_Update(&c, key_ref1, SHA512_DIGEST_LENGTH); unsigned char key_ref2[SHA512_DIGEST_LENGTH]; SHA512_Final(key_ref2, &c); static_assert(FSCRYPT_KEY_DESCRIPTOR_SIZE <= SHA512_DIGEST_LENGTH, "Hash too short for descriptor"); return std::string((char*)key_ref2, FSCRYPT_KEY_DESCRIPTOR_SIZE); } static bool fillKey(const KeyBuffer& key, fscrypt_key* fs_key) { if (key.size() != FSCRYPT_MAX_KEY_SIZE) { LOG(ERROR) << "Wrong size key " << key.size(); return false; } static_assert(FSCRYPT_MAX_KEY_SIZE == sizeof(fs_key->raw), "Mismatch of max key sizes"); fs_key->mode = 0; // unused by kernel memcpy(fs_key->raw, key.data(), key.size()); fs_key->size = key.size(); return true; } static char const* const NAME_PREFIXES[] = {"ext4", "f2fs", "fscrypt", nullptr}; static std::string keyrefstring(const std::string& raw_ref) { std::ostringstream o; for (unsigned char i : raw_ref) { o << std::hex << std::setw(2) << std::setfill('0') << (int)i; } return o.str(); } static std::string buildLegacyKeyName(const std::string& prefix, const std::string& raw_ref) { return prefix + ":" + keyrefstring(raw_ref); } // Get the ID of the keyring we store all fscrypt keys in when the kernel is too // old to support FS_IOC_ADD_ENCRYPTION_KEY and FS_IOC_REMOVE_ENCRYPTION_KEY. static bool fscryptKeyring(key_serial_t* device_keyring) { *device_keyring = keyctl_search(KEY_SPEC_SESSION_KEYRING, "keyring", "fscrypt", 0); if (*device_keyring == -1) { PLOG(ERROR) << "Unable to find device keyring"; return false; } return true; } // Add an encryption key of type "logon" to the global session keyring. static bool installKeyLegacy(const KeyBuffer& key, const std::string& raw_ref) { // Place fscrypt_key into automatically zeroing buffer. KeyBuffer fsKeyBuffer(sizeof(fscrypt_key)); fscrypt_key& fs_key = *reinterpret_cast(fsKeyBuffer.data()); if (!fillKey(key, &fs_key)) return false; key_serial_t device_keyring; if (!fscryptKeyring(&device_keyring)) return false; for (char const* const* name_prefix = NAME_PREFIXES; *name_prefix != nullptr; name_prefix++) { auto ref = buildLegacyKeyName(*name_prefix, raw_ref); key_serial_t key_id = add_key("logon", ref.c_str(), (void*)&fs_key, sizeof(fs_key), device_keyring); if (key_id == -1) { PLOG(ERROR) << "Failed to insert key into keyring " << device_keyring; return false; } LOG(DEBUG) << "Added key " << key_id << " (" << ref << ") to keyring " << device_keyring << " in process " << getpid(); } return true; } // Installs fscrypt-provisioning key into session level kernel keyring. // This allows for the given key to be installed back into filesystem keyring. // For more context see reloadKeyFromSessionKeyring. static bool installProvisioningKey(const KeyBuffer& key, const std::string& ref, const fscrypt_key_specifier& key_spec) { key_serial_t device_keyring; if (!fscryptKeyring(&device_keyring)) return false; // Place fscrypt_provisioning_key_payload into automatically zeroing buffer. KeyBuffer buf(sizeof(fscrypt_provisioning_key_payload) + key.size(), 0); fscrypt_provisioning_key_payload& provisioning_key = *reinterpret_cast(buf.data()); memcpy(provisioning_key.raw, key.data(), key.size()); provisioning_key.type = key_spec.type; key_serial_t key_id = add_key("fscrypt-provisioning", ref.c_str(), (void*)&provisioning_key, buf.size(), device_keyring); if (key_id == -1) { PLOG(ERROR) << "Failed to insert fscrypt-provisioning key for " << ref << " into session keyring"; return false; } LOG(DEBUG) << "Added fscrypt-provisioning key for " << ref << " to session keyring"; return true; } // Build a struct fscrypt_key_specifier for use in the key management ioctls. static bool buildKeySpecifier(fscrypt_key_specifier* spec, const EncryptionPolicy& policy) { switch (policy.options.version) { case 1: if (policy.key_raw_ref.size() != FSCRYPT_KEY_DESCRIPTOR_SIZE) { LOG(ERROR) << "Invalid key specifier size for v1 encryption policy: " << policy.key_raw_ref.size(); return false; } spec->type = FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR; memcpy(spec->u.descriptor, policy.key_raw_ref.c_str(), FSCRYPT_KEY_DESCRIPTOR_SIZE); return true; case 2: if (policy.key_raw_ref.size() != FSCRYPT_KEY_IDENTIFIER_SIZE) { LOG(ERROR) << "Invalid key specifier size for v2 encryption policy: " << policy.key_raw_ref.size(); return false; } spec->type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER; memcpy(spec->u.identifier, policy.key_raw_ref.c_str(), FSCRYPT_KEY_IDENTIFIER_SIZE); return true; default: LOG(ERROR) << "Invalid encryption policy version: " << policy.options.version; return false; } } // Installs key into keyring of a filesystem mounted on |mountpoint|. // // It's callers responsibility to fill key specifier, and either arg->raw or arg->key_id. // // In case arg->key_spec.type equals to FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER // arg->key_spec.u.identifier will be populated with raw key reference generated // by kernel. // // For documentation on difference between arg->raw and arg->key_id see // https://www.kernel.org/doc/html/latest/filesystems/fscrypt.html#fs-ioc-add-encryption-key static bool installFsKeyringKey(const std::string& mountpoint, const EncryptionOptions& options, fscrypt_add_key_arg* arg) { if (options.use_hw_wrapped_key) arg->__flags |= __FSCRYPT_ADD_KEY_FLAG_HW_WRAPPED; android::base::unique_fd fd(open(mountpoint.c_str(), O_RDONLY | O_DIRECTORY | O_CLOEXEC)); if (fd == -1) { PLOG(ERROR) << "Failed to open " << mountpoint << " to install key"; return false; } if (ioctl(fd, FS_IOC_ADD_ENCRYPTION_KEY, arg) != 0) { PLOG(ERROR) << "Failed to install fscrypt key to " << mountpoint; return false; } return true; } bool installKey(const std::string& mountpoint, const EncryptionOptions& options, const KeyBuffer& key, EncryptionPolicy* policy) { const std::lock_guard lock(fscrypt_keyring_mutex); policy->options = options; // Put the fscrypt_add_key_arg in an automatically-zeroing buffer, since we // have to copy the raw key into it. KeyBuffer arg_buf(sizeof(struct fscrypt_add_key_arg) + key.size(), 0); struct fscrypt_add_key_arg* arg = (struct fscrypt_add_key_arg*)arg_buf.data(); // Initialize the "key specifier", which is like a name for the key. switch (options.version) { case 1: // A key for a v1 policy is specified by an arbitrary 8-byte // "descriptor", which must be provided by userspace. We use the // first 8 bytes from the double SHA-512 of the key itself. policy->key_raw_ref = generateKeyRef((const uint8_t*)key.data(), key.size()); if (!isFsKeyringSupported()) { return installKeyLegacy(key, policy->key_raw_ref); } if (!buildKeySpecifier(&arg->key_spec, *policy)) { return false; } break; case 2: // A key for a v2 policy is specified by an 16-byte "identifier", // which is a cryptographic hash of the key itself which the kernel // computes and returns. Any user-provided value is ignored; we // just need to set the specifier type to indicate that we're adding // this type of key. arg->key_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER; break; default: LOG(ERROR) << "Invalid encryption policy version: " << options.version; return false; } arg->raw_size = key.size(); memcpy(arg->raw, key.data(), key.size()); if (!installFsKeyringKey(mountpoint, options, arg)) return false; if (arg->key_spec.type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) { // Retrieve the key identifier that the kernel computed. policy->key_raw_ref = std::string((char*)arg->key_spec.u.identifier, FSCRYPT_KEY_IDENTIFIER_SIZE); } std::string ref = keyrefstring(policy->key_raw_ref); LOG(DEBUG) << "Installed fscrypt key with ref " << ref << " to " << mountpoint; if (!installProvisioningKey(key, ref, arg->key_spec)) return false; return true; } // Remove an encryption key of type "logon" from the global session keyring. static bool evictKeyLegacy(const std::string& raw_ref) { key_serial_t device_keyring; if (!fscryptKeyring(&device_keyring)) return false; bool success = true; for (char const* const* name_prefix = NAME_PREFIXES; *name_prefix != nullptr; name_prefix++) { auto ref = buildLegacyKeyName(*name_prefix, raw_ref); auto key_serial = keyctl_search(device_keyring, "logon", ref.c_str(), 0); // Unlink the key from the keyring. Prefer unlinking to revoking or // invalidating, since unlinking is actually no less secure currently, and // it avoids bugs in certain kernel versions where the keyring key is // referenced from places it shouldn't be. if (keyctl_unlink(key_serial, device_keyring) != 0) { PLOG(ERROR) << "Failed to unlink key with serial " << key_serial << " ref " << ref; success = false; } else { LOG(DEBUG) << "Unlinked key with serial " << key_serial << " ref " << ref; } } return success; } static bool evictProvisioningKey(const std::string& ref) { key_serial_t device_keyring; if (!fscryptKeyring(&device_keyring)) { return false; } auto key_serial = keyctl_search(device_keyring, "fscrypt-provisioning", ref.c_str(), 0); if (key_serial == -1 && errno != ENOKEY) { PLOG(ERROR) << "Error searching session keyring for fscrypt-provisioning key for " << ref; return false; } if (key_serial != -1 && keyctl_unlink(key_serial, device_keyring) != 0) { PLOG(ERROR) << "Failed to unlink fscrypt-provisioning key for " << ref << " from session keyring"; return false; } return true; } static void waitForBusyFiles(const struct fscrypt_key_specifier key_spec, const std::string ref, const std::string mountpoint) { android::base::unique_fd fd(open(mountpoint.c_str(), O_RDONLY | O_DIRECTORY | O_CLOEXEC)); if (fd == -1) { PLOG(ERROR) << "Failed to open " << mountpoint << " to evict key"; return; } std::chrono::milliseconds wait_time(3200); std::chrono::milliseconds total_wait_time(0); while (wait_time <= std::chrono::milliseconds(51200)) { total_wait_time += wait_time; std::this_thread::sleep_for(wait_time); const std::lock_guard lock(fscrypt_keyring_mutex); struct fscrypt_get_key_status_arg get_arg; memset(&get_arg, 0, sizeof(get_arg)); get_arg.key_spec = key_spec; if (ioctl(fd, FS_IOC_GET_ENCRYPTION_KEY_STATUS, &get_arg) != 0) { PLOG(ERROR) << "Failed to get status for fscrypt key with ref " << ref << " from " << mountpoint; return; } if (get_arg.status != FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED) { LOG(DEBUG) << "Key status changed, cancelling busy file cleanup for key with ref " << ref << "."; return; } struct fscrypt_remove_key_arg remove_arg; memset(&remove_arg, 0, sizeof(remove_arg)); remove_arg.key_spec = key_spec; if (ioctl(fd, FS_IOC_REMOVE_ENCRYPTION_KEY, &remove_arg) != 0) { PLOG(ERROR) << "Failed to clean up busy files for fscrypt key with ref " << ref << " from " << mountpoint; return; } if (remove_arg.removal_status_flags & FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS) { // Should never happen because keys are only added/removed as root. LOG(ERROR) << "Unexpected case: key with ref " << ref << " is still added by other users!"; } else if (!(remove_arg.removal_status_flags & FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY)) { LOG(INFO) << "Successfully cleaned up busy files for key with ref " << ref << ". After waiting " << total_wait_time.count() << "ms."; return; } LOG(WARNING) << "Files still open after waiting " << total_wait_time.count() << "ms. Key with ref " << ref << " still has unlocked files!"; wait_time *= 2; } LOG(ERROR) << "Waiting for files to close never completed. Files using key with ref " << ref << " were not locked!"; } bool evictKey(const std::string& mountpoint, const EncryptionPolicy& policy) { const std::lock_guard lock(fscrypt_keyring_mutex); if (policy.options.version == 1 && !isFsKeyringSupported()) { return evictKeyLegacy(policy.key_raw_ref); } android::base::unique_fd fd(open(mountpoint.c_str(), O_RDONLY | O_DIRECTORY | O_CLOEXEC)); if (fd == -1) { PLOG(ERROR) << "Failed to open " << mountpoint << " to evict key"; return false; } struct fscrypt_remove_key_arg arg; memset(&arg, 0, sizeof(arg)); if (!buildKeySpecifier(&arg.key_spec, policy)) { return false; } std::string ref = keyrefstring(policy.key_raw_ref); if (ioctl(fd, FS_IOC_REMOVE_ENCRYPTION_KEY, &arg) != 0) { PLOG(ERROR) << "Failed to evict fscrypt key with ref " << ref << " from " << mountpoint; return false; } LOG(DEBUG) << "Evicted fscrypt key with ref " << ref << " from " << mountpoint; if (arg.removal_status_flags & FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS) { // Should never happen because keys are only added/removed as root. LOG(ERROR) << "Unexpected case: key with ref " << ref << " is still added by other users!"; } else if (arg.removal_status_flags & FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY) { LOG(WARNING) << "Files still open after removing key with ref " << ref << ". These files were not locked! Punting busy file clean up to worker thread."; // Processes are killed asynchronously in ActivityManagerService due to performance issues // with synchronous kills. If there were busy files they will probably be killed soon. Wait // for them asynchronously. std::thread busyFilesThread(waitForBusyFiles, arg.key_spec, ref, mountpoint); busyFilesThread.detach(); } if (!evictProvisioningKey(ref)) return false; return true; } bool retrieveOrGenerateKey(const std::string& key_path, const std::string& tmp_path, const KeyAuthentication& key_authentication, const KeyGeneration& gen, KeyBuffer* key) { if (pathExists(key_path)) { LOG(DEBUG) << "Key exists, using: " << key_path; if (!retrieveKey(key_path, key_authentication, key)) return false; } else { if (!gen.allow_gen) { LOG(ERROR) << "No key found in " << key_path; return false; } LOG(INFO) << "Creating new key in " << key_path; if (!generateStorageKey(gen, key)) return false; if (!storeKeyAtomically(key_path, tmp_path, key_authentication, *key)) return false; } return true; } bool reloadKeyFromSessionKeyring(const std::string& mountpoint, const EncryptionPolicy& policy) { key_serial_t device_keyring; if (!fscryptKeyring(&device_keyring)) { return false; } std::string ref = keyrefstring(policy.key_raw_ref); auto key_serial = keyctl_search(device_keyring, "fscrypt-provisioning", ref.c_str(), 0); if (key_serial == -1) { PLOG(ERROR) << "Failed to find fscrypt-provisioning key for " << ref << " in session keyring"; return false; } LOG(DEBUG) << "Installing fscrypt-provisioning key for " << ref << " back into " << mountpoint << " fs-keyring"; struct fscrypt_add_key_arg arg; memset(&arg, 0, sizeof(arg)); if (!buildKeySpecifier(&arg.key_spec, policy)) return false; arg.key_id = key_serial; if (!installFsKeyringKey(mountpoint, policy.options, &arg)) return false; return true; } } // namespace vold } // namespace android