# Copyright 2013 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Verifies linear behavior in exposure/gain space.""" import logging import math import os.path import matplotlib from matplotlib import pylab from mobly import test_runner import numpy as np import its_base_test import camera_properties_utils import capture_request_utils import image_processing_utils import its_session_utils import target_exposure_utils NAME = os.path.splitext(os.path.basename(__file__))[0] NUM_STEPS = 6 PATCH_H = 0.1 # center 10% patch params PATCH_W = 0.1 PATCH_X = 0.5 - PATCH_W/2 PATCH_Y = 0.5 - PATCH_H/2 RESIDUAL_THRESH = 0.0003 # sample error of ~2/255 in np.arange(0, 0.5, 0.1) VGA_W, VGA_H = 640, 480 # HAL3.2 spec requires curves up to 64 control points in length be supported L = 63 GAMMA_LUT = np.array( sum([[i/L, math.pow(i/L, 1/2.2)] for i in range(L+1)], [])) INV_GAMMA_LUT = np.array( sum([[i/L, math.pow(i/L, 2.2)] for i in range(L+1)], [])) class LinearityTest(its_base_test.ItsBaseTest): """Test that device processing can be inverted to linear pixels. Captures a sequence of shots with the device pointed at a uniform target. Attempts to invert all the ISP processing to get back to linear R,G,B pixel data. """ def test_linearity(self): logging.debug('Starting %s', NAME) with its_session_utils.ItsSession( device_id=self.dut.serial, camera_id=self.camera_id, hidden_physical_id=self.hidden_physical_id) as cam: props = cam.get_camera_properties() props = cam.override_with_hidden_physical_camera_props(props) camera_properties_utils.skip_unless( camera_properties_utils.compute_target_exposure(props)) sync_latency = camera_properties_utils.sync_latency(props) # Load chart for scene its_session_utils.load_scene( cam, props, self.scene, self.tablet, self.chart_distance) # Determine sensitivities to test over e_mid, s_mid = target_exposure_utils.get_target_exposure_combos( self.log_path, cam)['midSensitivity'] sens_range = props['android.sensor.info.sensitivityRange'] sensitivities = [s_mid*x/NUM_STEPS for x in range(1, NUM_STEPS)] sensitivities = [s for s in sensitivities if s > sens_range[0] and s < sens_range[1]] # Initialize capture request req = capture_request_utils.manual_capture_request(0, e_mid) req['android.blackLevel.lock'] = True req['android.tonemap.mode'] = 0 req['android.tonemap.curve'] = {'red': GAMMA_LUT.tolist(), 'green': GAMMA_LUT.tolist(), 'blue': GAMMA_LUT.tolist()} # Do captures and calculate center patch RGB means r_means = [] g_means = [] b_means = [] fmt = {'format': 'yuv', 'width': VGA_W, 'height': VGA_H} for sens in sensitivities: req['android.sensor.sensitivity'] = sens cap = its_session_utils.do_capture_with_latency( cam, req, sync_latency, fmt) img = image_processing_utils.convert_capture_to_rgb_image(cap) img_name = '%s_sens=%.04d.jpg' % ( os.path.join(self.log_path, NAME), sens) image_processing_utils.write_image(img, img_name) img = image_processing_utils.apply_lut_to_image( img, INV_GAMMA_LUT[1::2] * L) patch = image_processing_utils.get_image_patch( img, PATCH_X, PATCH_Y, PATCH_W, PATCH_H) rgb_means = image_processing_utils.compute_image_means(patch) r_means.append(rgb_means[0]) g_means.append(rgb_means[1]) b_means.append(rgb_means[2]) # Plot means pylab.figure(NAME) pylab.plot(sensitivities, r_means, '-ro') pylab.plot(sensitivities, g_means, '-go') pylab.plot(sensitivities, b_means, '-bo') pylab.title(NAME) pylab.xlim([sens_range[0], sens_range[1]/2]) pylab.ylim([0, 1]) pylab.xlabel('sensitivity(ISO)') pylab.ylabel('RGB avg [0, 1]') matplotlib.pyplot.savefig( '%s_plot_means.png' % os.path.join(self.log_path, NAME)) # Assert plot curves are linear w/ + slope by examining polyfit residual for means in [r_means, g_means, b_means]: line, residuals, _, _, _ = np.polyfit( range(len(sensitivities)), means, 1, full=True) logging.debug('Line: m=%f, b=%f, resid=%f', line[0], line[1], residuals[0]) msg = 'residual: %.5f, THRESH: %.4f' % (residuals[0], RESIDUAL_THRESH) assert residuals[0] < RESIDUAL_THRESH, msg assert line[0] > 0, 'slope %.6f less than 0!' % line[0] if __name__ == '__main__': test_runner.main()