#include #include #include #include #include #include #include #include "bench/utils.h" #include #include #include #include #include #include #include #include #include #include #ifdef BENCHMARK_INTEL_DNNL #include #endif // BENCHMARK_INTEL_DNNL #ifdef BENCHMARK_INTEL_DNNL static void DNNLSoftArgMax( benchmark::State& state) { const size_t elements = state.range(0); const size_t cache_line_size_max = 128; const size_t packed_elements = benchmark::utils::RoundUp(elements, cache_line_size_max / sizeof(float)); std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(-1000.0f, 1000.0f), std::ref(rng)); const size_t num_buffers = 1 + benchmark::utils::DivideRoundUp(benchmark::utils::GetMaxCacheSize(), packed_elements * sizeof(float)); std::vector x(elements); std::vector y(packed_elements * num_buffers); std::generate(x.begin(), x.end(), std::ref(f32rng)); dnnl_engine_t engine; if (dnnl_engine_create(&engine, dnnl_cpu, 0) != dnnl_success) { state.SkipWithError("failed to create CPU engine"); return; } dnnl_dim_t input_output_shape[1] = { static_cast(elements) }; dnnl_memory_desc_t memory_descriptor = { 0 }; if (dnnl_memory_desc_init_by_tag( &memory_descriptor, 1, input_output_shape, dnnl_f32, dnnl_x) != dnnl_success) { state.SkipWithError("failed to create input memory descriptor"); return; } dnnl_memory_t input_memory = nullptr; if (dnnl_memory_create( &input_memory, &memory_descriptor, engine, x.data()) != dnnl_success) { state.SkipWithError("failed to create input memory"); return; } dnnl_memory_t output_memory = nullptr; if (dnnl_memory_create( &output_memory, &memory_descriptor, engine, y.data()) != dnnl_success) { state.SkipWithError("failed to create output memory"); return; } dnnl_softmax_desc_t softmax_forward_descriptor = {}; if (dnnl_softmax_forward_desc_init( &softmax_forward_descriptor, dnnl_forward_inference, &memory_descriptor, 0) != dnnl_success) { state.SkipWithError("failed to create SoftMax forward descriptor"); return; } dnnl_primitive_desc_t softmax_primitive_descriptor = nullptr; if (dnnl_primitive_desc_create( &softmax_primitive_descriptor, &softmax_forward_descriptor, nullptr /* primitive attributes */, engine, nullptr /* hint */) != dnnl_success) { state.SkipWithError("failed to create SoftMax primitive descriptor"); return; } dnnl_primitive_t softmax_primitive = nullptr; if (dnnl_primitive_create( &softmax_primitive, softmax_primitive_descriptor) != dnnl_success) { state.SkipWithError("failed to create SoftMax primitive"); return; } dnnl_exec_arg_t softmax_args[2] = { {DNNL_ARG_SRC, input_memory}, {DNNL_ARG_DST, output_memory}, }; dnnl_stream_t stream = nullptr; if (dnnl_stream_create(&stream, engine, dnnl_stream_default_flags) != dnnl_success) { state.SkipWithError("failed to create stream"); return; } size_t buffer_index = 0; for (auto _ : state) { benchmark::utils::PrefetchToL1(x.data(), x.size() * sizeof(float)); if (++buffer_index == num_buffers) { buffer_index = 0; } const auto start = std::chrono::high_resolution_clock::now(); if (dnnl_primitive_execute( softmax_primitive, stream, 2, softmax_args) != dnnl_success) { state.SkipWithError("failed to execute SoftMax"); return; } const auto end = std::chrono::high_resolution_clock::now(); const auto elapsed_seconds = std::chrono::duration_cast>(end - start); state.SetIterationTime(elapsed_seconds.count()); } if (dnnl_stream_destroy(stream) != dnnl_success) { state.SkipWithError("failed to destroy stream"); return; } if (dnnl_primitive_desc_destroy(softmax_primitive_descriptor) != dnnl_success) { state.SkipWithError("failed to destroy SoftMax primitive descriptor"); return; } if (dnnl_primitive_destroy(softmax_primitive) != dnnl_success) { state.SkipWithError("failed to destroy SoftMax primitive"); return; } if (dnnl_memory_destroy(input_memory) != dnnl_success) { state.SkipWithError("failed to destroy input memory"); return; } if (dnnl_memory_destroy(output_memory) != dnnl_success) { state.SkipWithError("failed to destroy output memory"); return; } if (dnnl_engine_destroy(engine) != dnnl_success) { state.SkipWithError("failed to destroy engine"); return; } const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); if (cpu_frequency != 0) { state.counters["cpufreq"] = cpu_frequency; } const size_t elements_per_iteration = elements; state.counters["elements"] = benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate); const size_t bytes_per_iteration = 2 * elements * sizeof(float); state.counters["bytes"] = benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); } #endif // BENCHMARK_INTEL_DNNL static void ThreePassSoftMaxWithRecomputing( benchmark::State& state, xnn_f32_rmax_ukernel_function rmax, xnn_f32_raddexpminusmax_ukernel_function raddexpminusmax, xnn_f32_vscaleexpminusmax_ukernel_function vscaleexpminusmax, benchmark::utils::IsaCheckFunction isa_check = nullptr) { if (isa_check && !isa_check(state)) { return; } const size_t elements = state.range(0); const size_t cache_line_size_max = 128; const size_t packed_elements = benchmark::utils::RoundUp(elements, cache_line_size_max / sizeof(float)); std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(-1000.0f, 1000.0f), std::ref(rng)); const size_t num_buffers = 1 + benchmark::utils::DivideRoundUp(benchmark::utils::GetMaxCacheSize(), packed_elements * sizeof(float)); std::vector x(elements); std::vector y(packed_elements * num_buffers); std::generate(x.begin(), x.end(), std::ref(f32rng)); benchmark::utils::DisableDenormals(); size_t buffer_index = 0; for (auto _ : state) { benchmark::utils::PrefetchToL1(x.data(), x.size() * sizeof(float)); if (++buffer_index == num_buffers) { buffer_index = 0; } const auto start = std::chrono::high_resolution_clock::now(); float x_max = nanf(""); rmax(elements * sizeof(float), x.data(), &x_max); float y_sum = nanf(""); raddexpminusmax(elements * sizeof(float), x.data(), &y_sum, x_max); vscaleexpminusmax(elements * sizeof(float), x.data(), y.data() + packed_elements * buffer_index, x_max, 1.0f / y_sum); const auto end = std::chrono::high_resolution_clock::now(); const auto elapsed_seconds = std::chrono::duration_cast>(end - start); state.SetIterationTime(elapsed_seconds.count()); } const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); if (cpu_frequency != 0) { state.counters["cpufreq"] = cpu_frequency; } const size_t elements_per_iteration = elements; state.counters["elements"] = benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate); const size_t bytes_per_iteration = 2 * elements * sizeof(float); state.counters["bytes"] = benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); } static void ThreePassSoftMaxWithReloading( benchmark::State& state, xnn_f32_rmax_ukernel_function rmax, xnn_f32_raddstoreexpminusmax_ukernel_function raddstoreexpminusmax, xnn_f32_vscale_ukernel_function vscale, benchmark::utils::IsaCheckFunction isa_check = nullptr) { if (isa_check && !isa_check(state)) { return; } const size_t elements = state.range(0); const size_t cache_line_size_max = 128; const size_t packed_elements = benchmark::utils::RoundUp(elements, cache_line_size_max / sizeof(float)); std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(-1000.0f, 1000.0f), std::ref(rng)); const size_t num_buffers = 1 + benchmark::utils::DivideRoundUp(benchmark::utils::GetMaxCacheSize(), packed_elements * sizeof(float)); std::vector x(elements); std::vector y(packed_elements * num_buffers); std::generate(x.begin(), x.end(), std::ref(f32rng)); benchmark::utils::DisableDenormals(); size_t buffer_index = 0; for (auto _ : state) { benchmark::utils::PrefetchToL1(x.data(), x.size() * sizeof(float)); if (++buffer_index == num_buffers) { buffer_index = 0; } const auto start = std::chrono::high_resolution_clock::now(); float x_max = nanf(""); rmax(elements * sizeof(float), x.data(), &x_max); float y_sum = nanf(""); raddstoreexpminusmax(elements * sizeof(float), x.data(), y.data() + packed_elements * buffer_index, &y_sum, x_max); vscale(elements * sizeof(float), y.data() + packed_elements * buffer_index, y.data() + packed_elements * buffer_index, 1.0f / y_sum); const auto end = std::chrono::high_resolution_clock::now(); const auto elapsed_seconds = std::chrono::duration_cast>(end - start); state.SetIterationTime(elapsed_seconds.count()); } const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); if (cpu_frequency != 0) { state.counters["cpufreq"] = cpu_frequency; } const size_t elements_per_iteration = elements; state.counters["elements"] = benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate); const size_t bytes_per_iteration = 2 * elements * sizeof(float); state.counters["bytes"] = benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); } static void TwoPassSoftMax( benchmark::State& state, xnn_f32_raddextexp_ukernel_function raddextexp, xnn_f32_vscaleextexp_ukernel_function vscaleextexp, benchmark::utils::IsaCheckFunction isa_check = nullptr) { if (isa_check && !isa_check(state)) { return; } const size_t elements = state.range(0); const size_t cache_line_size_max = 128; const size_t packed_elements = benchmark::utils::RoundUp(elements, cache_line_size_max / sizeof(float)); std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(-1000.0f, 1000.0f), std::ref(rng)); const size_t num_buffers = 1 + benchmark::utils::DivideRoundUp(benchmark::utils::GetMaxCacheSize(), packed_elements * sizeof(float)); std::vector x(elements); std::vector y(packed_elements * num_buffers); std::generate(x.begin(), x.end(), std::ref(f32rng)); benchmark::utils::DisableDenormals(); size_t buffer_index = 0; for (auto _ : state) { benchmark::utils::PrefetchToL1(x.data(), x.size() * sizeof(float)); if (++buffer_index == num_buffers) { buffer_index = 0; } const auto start = std::chrono::high_resolution_clock::now(); float scale[2]; raddextexp(elements * sizeof(float), x.data(), scale); vscaleextexp(elements * sizeof(float), x.data(), y.data() + packed_elements * buffer_index, 1.0f / scale[0], -scale[1]); const auto end = std::chrono::high_resolution_clock::now(); const auto elapsed_seconds = std::chrono::duration_cast>(end - start); state.SetIterationTime(elapsed_seconds.count()); } const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); if (cpu_frequency != 0) { state.counters["cpufreq"] = cpu_frequency; } const size_t elements_per_iteration = elements; state.counters["elements"] = benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate); const size_t bytes_per_iteration = 2 * elements * sizeof(float); state.counters["bytes"] = benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); } static void CharacteristicArguments(benchmark::internal::Benchmark* b) { for (int32_t n = 1000; n <= 100000000; n *= 10) { b->Arg(n); b->Arg(3 * n); } } #ifdef BENCHMARK_INTEL_DNNL BENCHMARK(DNNLSoftArgMax)->Apply(CharacteristicArguments)->UseManualTime(); #endif #if XNN_ARCH_X86 || XNN_ARCH_X86_64 BENCHMARK_CAPTURE(TwoPassSoftMax, avx2_p5, xnn_f32_raddextexp_ukernel__avx2_p5_x96, xnn_f32_vscaleextexp_ukernel__avx2_p5_x40, benchmark::utils::CheckAVX2)->Apply(CharacteristicArguments)->UseManualTime(); BENCHMARK_CAPTURE(ThreePassSoftMaxWithRecomputing, avx2_p5, xnn_f32_rmax_ukernel__avx, xnn_f32_raddexpminusmax_ukernel__avx2_p5_x96, xnn_f32_vscaleexpminusmax_ukernel__avx2_p5_x24, benchmark::utils::CheckAVX2)->Apply(CharacteristicArguments)->UseManualTime(); BENCHMARK_CAPTURE(ThreePassSoftMaxWithReloading, avx2_p5, xnn_f32_rmax_ukernel__avx, xnn_f32_raddstoreexpminusmax_ukernel__avx2_p5_x64_acc2, xnn_f32_vscale_ukernel__avx_x32, benchmark::utils::CheckAVX2)->Apply(CharacteristicArguments)->UseManualTime(); BENCHMARK_CAPTURE(TwoPassSoftMax, avx512f_p5_scalef, xnn_f32_raddextexp_ukernel__avx512f_p5_scalef_x144_acc3, xnn_f32_vscaleextexp_ukernel__avx512f_p5_scalef_x16, benchmark::utils::CheckAVX512F)->Apply(CharacteristicArguments)->UseManualTime(); BENCHMARK_CAPTURE(ThreePassSoftMaxWithRecomputing, avx512f_p5_scalef, xnn_f32_rmax_ukernel__avx512f, xnn_f32_raddexpminusmax_ukernel__avx512f_p5_scalef_x128_acc4, xnn_f32_vscaleexpminusmax_ukernel__avx512f_p5_scalef_x16, benchmark::utils::CheckAVX512F)->Apply(CharacteristicArguments)->UseManualTime(); BENCHMARK_CAPTURE(ThreePassSoftMaxWithReloading, avx512f_p5_scalef, xnn_f32_rmax_ukernel__avx512f, xnn_f32_raddstoreexpminusmax_ukernel__avx512f_p5_scalef_x128_acc2, xnn_f32_vscale_ukernel__avx512f_x64, benchmark::utils::CheckAVX512F)->Apply(CharacteristicArguments)->UseManualTime(); #endif // XNN_ARCH_X86 || XNN_ARCH_X86_64 #ifndef XNNPACK_BENCHMARK_NO_MAIN BENCHMARK_MAIN(); #endif