/* * Copyright (C) 2021 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "neuralnetworks_aidl_hal_test" #include #include #include #include #include #include #include "Utils.h" #include "VtsHalNeuralnetworks.h" namespace aidl::android::hardware::neuralnetworks::vts::functional { using implementation::PreparedModelCallback; // create device test TEST_P(NeuralNetworksAidlTest, CreateDevice) {} // initialization TEST_P(NeuralNetworksAidlTest, GetCapabilitiesTest) { Capabilities capabilities; const auto retStatus = kDevice->getCapabilities(&capabilities); ASSERT_TRUE(retStatus.isOk()); auto isPositive = [](const PerformanceInfo& perf) { return perf.execTime > 0.0f && perf.powerUsage > 0.0f; }; EXPECT_TRUE(isPositive(capabilities.relaxedFloat32toFloat16PerformanceScalar)); EXPECT_TRUE(isPositive(capabilities.relaxedFloat32toFloat16PerformanceTensor)); const auto& opPerf = capabilities.operandPerformance; EXPECT_TRUE( std::all_of(opPerf.begin(), opPerf.end(), [isPositive](const OperandPerformance& a) { return isPositive(a.info); })); EXPECT_TRUE(std::is_sorted(opPerf.begin(), opPerf.end(), [](const OperandPerformance& a, const OperandPerformance& b) { return a.type < b.type; })); EXPECT_TRUE(std::all_of(opPerf.begin(), opPerf.end(), [](const OperandPerformance& a) { return a.type != OperandType::SUBGRAPH; })); EXPECT_TRUE(isPositive(capabilities.ifPerformance)); EXPECT_TRUE(isPositive(capabilities.whilePerformance)); } // detect cycle TEST_P(NeuralNetworksAidlTest, CycleTest) { // opnd0 = TENSOR_FLOAT32 // model input // opnd1 = TENSOR_FLOAT32 // model input // opnd2 = INT32 // model input // opnd3 = ADD(opnd0, opnd4, opnd2) // opnd4 = ADD(opnd1, opnd3, opnd2) // opnd5 = ADD(opnd4, opnd0, opnd2) // model output // // +-----+ // | | // v | // 3 = ADD(0, 4, 2) | // | | // +----------+ | // | | // v | // 4 = ADD(1, 3, 2) | // | | // +----------------+ // | // | // +-------+ // | // v // 5 = ADD(4, 0, 2) const std::vector operands = { { // operands[0] .type = OperandType::TENSOR_FLOAT32, .dimensions = {1}, .scale = 0.0f, .zeroPoint = 0, .lifetime = OperandLifeTime::SUBGRAPH_INPUT, .location = {.poolIndex = 0, .offset = 0, .length = 0}, }, { // operands[1] .type = OperandType::TENSOR_FLOAT32, .dimensions = {1}, .scale = 0.0f, .zeroPoint = 0, .lifetime = OperandLifeTime::SUBGRAPH_INPUT, .location = {.poolIndex = 0, .offset = 0, .length = 0}, }, { // operands[2] .type = OperandType::INT32, .dimensions = {}, .scale = 0.0f, .zeroPoint = 0, .lifetime = OperandLifeTime::SUBGRAPH_INPUT, .location = {.poolIndex = 0, .offset = 0, .length = 0}, }, { // operands[3] .type = OperandType::TENSOR_FLOAT32, .dimensions = {1}, .scale = 0.0f, .zeroPoint = 0, .lifetime = OperandLifeTime::TEMPORARY_VARIABLE, .location = {.poolIndex = 0, .offset = 0, .length = 0}, }, { // operands[4] .type = OperandType::TENSOR_FLOAT32, .dimensions = {1}, .scale = 0.0f, .zeroPoint = 0, .lifetime = OperandLifeTime::TEMPORARY_VARIABLE, .location = {.poolIndex = 0, .offset = 0, .length = 0}, }, { // operands[5] .type = OperandType::TENSOR_FLOAT32, .dimensions = {1}, .scale = 0.0f, .zeroPoint = 0, .lifetime = OperandLifeTime::SUBGRAPH_OUTPUT, .location = {.poolIndex = 0, .offset = 0, .length = 0}, }, }; const std::vector operations = { {.type = OperationType::ADD, .inputs = {0, 4, 2}, .outputs = {3}}, {.type = OperationType::ADD, .inputs = {1, 3, 2}, .outputs = {4}}, {.type = OperationType::ADD, .inputs = {4, 0, 2}, .outputs = {5}}, }; Subgraph subgraph = { .operands = operands, .operations = operations, .inputIndexes = {0, 1, 2}, .outputIndexes = {5}, }; const Model model = { .main = std::move(subgraph), .referenced = {}, .operandValues = {}, .pools = {}, }; // ensure that getSupportedOperations() checks model validity std::vector supportedOps; const auto supportedOpsStatus = kDevice->getSupportedOperations(model, &supportedOps); ASSERT_FALSE(supportedOpsStatus.isOk()); ASSERT_EQ(supportedOpsStatus.getExceptionCode(), EX_SERVICE_SPECIFIC); ASSERT_EQ(static_cast(supportedOpsStatus.getServiceSpecificError()), ErrorStatus::INVALID_ARGUMENT); // ensure that prepareModel() checks model validity auto preparedModelCallback = ndk::SharedRefBase::make(); auto prepareLaunchStatus = kDevice->prepareModel(model, ExecutionPreference::FAST_SINGLE_ANSWER, kDefaultPriority, kNoDeadline, {}, {}, kEmptyCacheToken, preparedModelCallback); // Note that preparation can fail for reasons other than an // invalid model (invalid model should result in // INVALID_ARGUMENT) -- for example, perhaps not all // operations are supported, or perhaps the device hit some // kind of capacity limit. ASSERT_FALSE(prepareLaunchStatus.isOk()); EXPECT_EQ(prepareLaunchStatus.getExceptionCode(), EX_SERVICE_SPECIFIC); EXPECT_NE(static_cast(prepareLaunchStatus.getServiceSpecificError()), ErrorStatus::NONE); EXPECT_NE(preparedModelCallback->getStatus(), ErrorStatus::NONE); EXPECT_EQ(preparedModelCallback->getPreparedModel(), nullptr); } } // namespace aidl::android::hardware::neuralnetworks::vts::functional