/* * Copyright (C) 2019, The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "aidl_language.h" #include "aidl_typenames.h" #include "logging.h" #include #include #include #include #include #include #include #include using android::base::ConsumeSuffix; using android::base::EndsWith; using android::base::Join; using android::base::StartsWith; using std::string; using std::unique_ptr; using std::vector; template constexpr int CLZ(T x) { // __builtin_clz(0) is undefined if (x == 0) return sizeof(T) * 8; return (sizeof(T) == sizeof(uint64_t)) ? __builtin_clzl(x) : __builtin_clz(x); } template class OverflowGuard { public: OverflowGuard(T value) : mValue(value) {} bool Overflowed() const { return mOverflowed; } T operator+() { return +mValue; } T operator-() { if (isMin()) { mOverflowed = true; return 0; } return -mValue; } T operator!() { return !mValue; } T operator~() { return ~mValue; } T operator+(T o) { T out; mOverflowed = __builtin_add_overflow(mValue, o, &out); return out; } T operator-(T o) { T out; mOverflowed = __builtin_sub_overflow(mValue, o, &out); return out; } T operator*(T o) { T out; #ifdef _WIN32 // ___mulodi4 not on windows https://bugs.llvm.org/show_bug.cgi?id=46669 // we should still get an error here from ubsan, but the nice error // is needed on linux for aidl_parser_fuzzer, where we are more // concerned about overflows elsewhere in the compiler in addition to // those in interfaces. out = mValue * o; #else mOverflowed = __builtin_mul_overflow(mValue, o, &out); #endif return out; } T operator/(T o) { if (o == 0 || (isMin() && o == -1)) { mOverflowed = true; return 0; } return mValue / o; } T operator%(T o) { if (o == 0 || (isMin() && o == -1)) { mOverflowed = true; return 0; } return mValue % o; } T operator|(T o) { return mValue | o; } T operator^(T o) { return mValue ^ o; } T operator&(T o) { return mValue & o; } T operator<(T o) { return mValue < o; } T operator>(T o) { return mValue > o; } T operator<=(T o) { return mValue <= o; } T operator>=(T o) { return mValue >= o; } T operator==(T o) { return mValue == o; } T operator!=(T o) { return mValue != o; } T operator>>(T o) { if (o < 0 || o >= static_cast(sizeof(T) * 8) || mValue < 0) { mOverflowed = true; return 0; } return mValue >> o; } T operator<<(T o) { if (o < 0 || mValue < 0 || o > CLZ(mValue) || o >= static_cast(sizeof(T) * 8)) { mOverflowed = true; return 0; } return mValue << o; } T operator||(T o) { return mValue || o; } T operator&&(T o) { return mValue && o; } private: bool isMin() { return mValue == std::numeric_limits::min(); } T mValue; bool mOverflowed = false; }; template bool processGuard(const OverflowGuard& guard, const AidlConstantValue& context) { if (guard.Overflowed()) { AIDL_ERROR(context) << "Constant expression computation overflows."; return false; } return true; } // TODO: factor out all these macros #define SHOULD_NOT_REACH() AIDL_FATAL(AIDL_LOCATION_HERE) << "Should not reach." #define OPEQ(__y__) (string(op_) == string(__y__)) #define COMPUTE_UNARY(T, __op__) \ if (op == string(#__op__)) { \ OverflowGuard guard(val); \ *out = __op__ guard; \ return processGuard(guard, context); \ } #define COMPUTE_BINARY(T, __op__) \ if (op == string(#__op__)) { \ OverflowGuard guard(lval); \ *out = guard __op__ rval; \ return processGuard(guard, context); \ } #define OP_IS_BIN_ARITHMETIC (OPEQ("+") || OPEQ("-") || OPEQ("*") || OPEQ("/") || OPEQ("%")) #define OP_IS_BIN_BITFLIP (OPEQ("|") || OPEQ("^") || OPEQ("&")) #define OP_IS_BIN_COMP \ (OPEQ("<") || OPEQ(">") || OPEQ("<=") || OPEQ(">=") || OPEQ("==") || OPEQ("!=")) #define OP_IS_BIN_SHIFT (OPEQ(">>") || OPEQ("<<")) #define OP_IS_BIN_LOGICAL (OPEQ("||") || OPEQ("&&")) // NOLINT to suppress missing parentheses warnings about __def__. #define SWITCH_KIND(__cond__, __action__, __def__) \ switch (__cond__) { \ case Type::BOOLEAN: \ __action__(bool); \ case Type::INT8: \ __action__(int8_t); \ case Type::INT32: \ __action__(int32_t); \ case Type::INT64: \ __action__(int64_t); \ default: \ __def__; /* NOLINT */ \ } template bool handleUnary(const AidlConstantValue& context, const string& op, T val, int64_t* out) { COMPUTE_UNARY(T, +) COMPUTE_UNARY(T, -) COMPUTE_UNARY(T, !) COMPUTE_UNARY(T, ~) AIDL_FATAL(context) << "Could not handleUnary for " << op << " " << val; return false; } template <> bool handleUnary(const AidlConstantValue& context, const string& op, bool val, int64_t* out) { COMPUTE_UNARY(bool, +) COMPUTE_UNARY(bool, -) COMPUTE_UNARY(bool, !) if (op == "~") { AIDL_ERROR(context) << "Bitwise negation of a boolean expression is always true."; return false; } AIDL_FATAL(context) << "Could not handleUnary for " << op << " " << val; return false; } template bool handleBinaryCommon(const AidlConstantValue& context, T lval, const string& op, T rval, int64_t* out) { COMPUTE_BINARY(T, +) COMPUTE_BINARY(T, -) COMPUTE_BINARY(T, *) COMPUTE_BINARY(T, /) COMPUTE_BINARY(T, %) COMPUTE_BINARY(T, |) COMPUTE_BINARY(T, ^) COMPUTE_BINARY(T, &) // comparison operators: return 0 or 1 by nature. COMPUTE_BINARY(T, ==) COMPUTE_BINARY(T, !=) COMPUTE_BINARY(T, <) COMPUTE_BINARY(T, >) COMPUTE_BINARY(T, <=) COMPUTE_BINARY(T, >=) AIDL_FATAL(context) << "Could not handleBinaryCommon for " << lval << " " << op << " " << rval; return false; } template bool handleShift(const AidlConstantValue& context, T lval, const string& op, T rval, int64_t* out) { // just cast rval to int64_t and it should fit. COMPUTE_BINARY(T, >>) COMPUTE_BINARY(T, <<) AIDL_FATAL(context) << "Could not handleShift for " << lval << " " << op << " " << rval; return false; } bool handleLogical(const AidlConstantValue& context, bool lval, const string& op, bool rval, int64_t* out) { COMPUTE_BINARY(bool, ||); COMPUTE_BINARY(bool, &&); AIDL_FATAL(context) << "Could not handleLogical for " << lval << " " << op << " " << rval; return false; } bool ParseFloating(std::string_view sv, double* parsed) { // float literal should be parsed successfully. android::base::ConsumeSuffix(&sv, "f"); return android::base::ParseDouble(std::string(sv).data(), parsed); } bool ParseFloating(std::string_view sv, float* parsed) { // we only care about float literal (with suffix "f"). if (!android::base::ConsumeSuffix(&sv, "f")) { return false; } return android::base::ParseFloat(std::string(sv).data(), parsed); } bool AidlUnaryConstExpression::IsCompatibleType(Type type, const string& op) { // Verify the unary type here switch (type) { case Type::BOOLEAN: // fall-through case Type::INT8: // fall-through case Type::INT32: // fall-through case Type::INT64: return true; case Type::FLOATING: return (op == "+" || op == "-"); default: return false; } } bool AidlBinaryConstExpression::AreCompatibleTypes(Type t1, Type t2) { switch (t1) { case Type::STRING: if (t2 == Type::STRING) { return true; } break; case Type::BOOLEAN: // fall-through case Type::INT8: // fall-through case Type::INT32: // fall-through case Type::INT64: switch (t2) { case Type::BOOLEAN: // fall-through case Type::INT8: // fall-through case Type::INT32: // fall-through case Type::INT64: return true; break; default: break; } break; default: break; } return false; } // Returns the promoted kind for both operands AidlConstantValue::Type AidlBinaryConstExpression::UsualArithmeticConversion(Type left, Type right) { // These are handled as special cases AIDL_FATAL_IF(left == Type::STRING || right == Type::STRING, AIDL_LOCATION_HERE); AIDL_FATAL_IF(left == Type::FLOATING || right == Type::FLOATING, AIDL_LOCATION_HERE); // Kinds in concern: bool, (u)int[8|32|64] if (left == right) return left; // easy case if (left == Type::BOOLEAN) return right; if (right == Type::BOOLEAN) return left; return left < right ? right : left; } // Returns the promoted integral type where INT32 is the smallest type AidlConstantValue::Type AidlBinaryConstExpression::IntegralPromotion(Type in) { return (Type::INT32 < in) ? in : Type::INT32; } AidlConstantValue* AidlConstantValue::Default(const AidlTypeSpecifier& specifier) { AidlLocation location = specifier.GetLocation(); // allocation of int[0] is a bit wasteful in Java if (specifier.IsArray()) { return nullptr; } const std::string name = specifier.GetName(); if (name == "boolean") { return Boolean(location, false); } if (name == "char") { return Character(location, "'\\0'"); // literal to be used in backends } if (name == "byte" || name == "int" || name == "long") { return Integral(location, "0"); } if (name == "float") { return Floating(location, "0.0f"); } if (name == "double") { return Floating(location, "0.0"); } return nullptr; } AidlConstantValue* AidlConstantValue::Boolean(const AidlLocation& location, bool value) { return new AidlConstantValue(location, Type::BOOLEAN, value ? "true" : "false"); } AidlConstantValue* AidlConstantValue::Character(const AidlLocation& location, const std::string& value) { return new AidlConstantValue(location, Type::CHARACTER, value); } AidlConstantValue* AidlConstantValue::Floating(const AidlLocation& location, const std::string& value) { return new AidlConstantValue(location, Type::FLOATING, value); } bool AidlConstantValue::IsHex(const string& value) { return StartsWith(value, "0x") || StartsWith(value, "0X"); } bool AidlConstantValue::ParseIntegral(const string& value, int64_t* parsed_value, Type* parsed_type) { if (parsed_value == nullptr || parsed_type == nullptr) { return false; } const bool isLong = EndsWith(value, 'l') || EndsWith(value, 'L'); const std::string value_substr = isLong ? value.substr(0, value.size() - 1) : value; if (IsHex(value)) { // AIDL considers 'const int foo = 0xffffffff' as -1, but if we want to // handle that when computing constant expressions, then we need to // represent 0xffffffff as a uint32_t. However, AIDL only has signed types; // so we parse as an unsigned int when possible and then cast to a signed // int. One example of this is in ICameraService.aidl where a constant int // is used for bit manipulations which ideally should be handled with an // unsigned int. // // Note, for historical consistency, we need to consider small hex values // as an integral type. Recognizing them as INT8 could break some files, // even though it would simplify this code. if (uint32_t rawValue32; !isLong && android::base::ParseUint(value_substr, &rawValue32)) { *parsed_value = static_cast(rawValue32); *parsed_type = Type::INT32; } else if (uint64_t rawValue64; android::base::ParseUint(value_substr, &rawValue64)) { *parsed_value = static_cast(rawValue64); *parsed_type = Type::INT64; } else { *parsed_value = 0; *parsed_type = Type::ERROR; return false; } return true; } if (!android::base::ParseInt(value_substr, parsed_value)) { *parsed_value = 0; *parsed_type = Type::ERROR; return false; } if (isLong) { *parsed_type = Type::INT64; } else { // guess literal type. if (*parsed_value <= INT8_MAX && *parsed_value >= INT8_MIN) { *parsed_type = Type::INT8; } else if (*parsed_value <= INT32_MAX && *parsed_value >= INT32_MIN) { *parsed_type = Type::INT32; } else { *parsed_type = Type::INT64; } } return true; } AidlConstantValue* AidlConstantValue::Integral(const AidlLocation& location, const string& value) { AIDL_FATAL_IF(value.empty(), location); Type parsed_type; int64_t parsed_value = 0; bool success = ParseIntegral(value, &parsed_value, &parsed_type); if (!success) { return nullptr; } return new AidlConstantValue(location, parsed_type, parsed_value, value); } AidlConstantValue* AidlConstantValue::Array( const AidlLocation& location, std::unique_ptr>> values) { AIDL_FATAL_IF(values == nullptr, location); std::vector str_values; for (const auto& v : *values) { str_values.push_back(v->value_); } return new AidlConstantValue(location, Type::ARRAY, std::move(values), Join(str_values, ", ")); } AidlConstantValue* AidlConstantValue::String(const AidlLocation& location, const string& value) { return new AidlConstantValue(location, Type::STRING, value); } string AidlConstantValue::ValueString(const AidlTypeSpecifier& type, const ConstantValueDecorator& decorator) const { if (type.IsGeneric()) { AIDL_ERROR(type) << "Generic type cannot be specified with a constant literal."; return ""; } if (!is_evaluated_) { // TODO(b/142722772) CheckValid() should be called before ValueString() bool success = CheckValid(); success &= evaluate(); if (!success) { // the detailed error message shall be printed in evaluate return ""; } } if (!is_valid_) { AIDL_ERROR(this) << "Invalid constant value: " + value_; return ""; } const AidlDefinedType* defined_type = type.GetDefinedType(); if (defined_type && !type.IsArray()) { const AidlEnumDeclaration* enum_type = defined_type->AsEnumDeclaration(); if (!enum_type) { AIDL_ERROR(this) << "Invalid type (" << defined_type->GetCanonicalName() << ") for a const value (" << value_ << ")"; return ""; } if (type_ != Type::REF) { AIDL_ERROR(this) << "Invalid value (" << value_ << ") for enum " << enum_type->GetCanonicalName(); return ""; } return decorator(type, value_); } const string& type_string = type.GetName(); int err = 0; switch (final_type_) { case Type::CHARACTER: if (type_string == "char") { return decorator(type, final_string_value_); } err = -1; break; case Type::STRING: if (type_string == "String") { return decorator(type, final_string_value_); } err = -1; break; case Type::BOOLEAN: // fall-through case Type::INT8: // fall-through case Type::INT32: // fall-through case Type::INT64: if (type_string == "byte") { if (final_value_ > INT8_MAX || final_value_ < INT8_MIN) { err = -1; break; } return decorator(type, std::to_string(static_cast(final_value_))); } else if (type_string == "int") { if (final_value_ > INT32_MAX || final_value_ < INT32_MIN) { err = -1; break; } return decorator(type, std::to_string(static_cast(final_value_))); } else if (type_string == "long") { return decorator(type, std::to_string(final_value_)); } else if (type_string == "boolean") { return decorator(type, final_value_ ? "true" : "false"); } err = -1; break; case Type::ARRAY: { if (!type.IsArray()) { err = -1; break; } vector value_strings; value_strings.reserve(values_.size()); bool success = true; for (const auto& value : values_) { const AidlTypeSpecifier& array_base = type.ArrayBase(); const string value_string = value->ValueString(array_base, decorator); if (value_string.empty()) { success = false; break; } value_strings.push_back(value_string); } if (!success) { err = -1; break; } return decorator(type, "{" + Join(value_strings, ", ") + "}"); } case Type::FLOATING: { if (type_string == "double") { double parsed_value; if (!ParseFloating(value_, &parsed_value)) { AIDL_ERROR(this) << "Could not parse " << value_; err = -1; break; } return decorator(type, std::to_string(parsed_value)); } if (type_string == "float") { float parsed_value; if (!ParseFloating(value_, &parsed_value)) { AIDL_ERROR(this) << "Could not parse " << value_; err = -1; break; } return decorator(type, std::to_string(parsed_value) + "f"); } err = -1; break; } default: err = -1; break; } AIDL_FATAL_IF(err == 0, this); AIDL_ERROR(this) << "Invalid type specifier for " << ToString(final_type_) << ": " << type_string; return ""; } bool AidlConstantValue::CheckValid() const { // Nothing needs to be checked here. The constant value will be validated in // the constructor or in the evaluate() function. if (is_evaluated_) return is_valid_; switch (type_) { case Type::BOOLEAN: // fall-through case Type::INT8: // fall-through case Type::INT32: // fall-through case Type::INT64: // fall-through case Type::CHARACTER: // fall-through case Type::STRING: // fall-through case Type::REF: // fall-through case Type::FLOATING: // fall-through case Type::UNARY: // fall-through case Type::BINARY: is_valid_ = true; break; case Type::ARRAY: is_valid_ = true; for (const auto& v : values_) is_valid_ &= v->CheckValid(); break; case Type::ERROR: return false; default: AIDL_FATAL(this) << "Unrecognized constant value type: " << ToString(type_); return false; } return true; } bool AidlConstantValue::evaluate() const { if (is_evaluated_) { return is_valid_; } int err = 0; is_evaluated_ = true; switch (type_) { case Type::ARRAY: { Type array_type = Type::ERROR; bool success = true; for (const auto& value : values_) { success = value->CheckValid(); if (success) { success = value->evaluate(); if (!success) { AIDL_ERROR(this) << "Invalid array element: " << value->value_; break; } if (array_type == Type::ERROR) { array_type = value->final_type_; } else if (!AidlBinaryConstExpression::AreCompatibleTypes(array_type, value->final_type_)) { AIDL_ERROR(this) << "Incompatible array element type: " << ToString(value->final_type_) << ". Expecting type compatible with " << ToString(array_type); success = false; break; } } else { break; } } if (!success) { err = -1; break; } final_type_ = type_; break; } case Type::BOOLEAN: if ((value_ != "true") && (value_ != "false")) { AIDL_ERROR(this) << "Invalid constant boolean value: " << value_; err = -1; break; } final_value_ = (value_ == "true") ? 1 : 0; final_type_ = type_; break; case Type::INT8: // fall-through case Type::INT32: // fall-through case Type::INT64: // Parsing happens in the constructor final_type_ = type_; break; case Type::CHARACTER: // fall-through case Type::STRING: final_string_value_ = value_; final_type_ = type_; break; case Type::FLOATING: // Just parse on the fly in ValueString final_type_ = type_; break; default: AIDL_FATAL(this) << "Unrecognized constant value type: " << ToString(type_); err = -1; } return (err == 0) ? true : false; } string AidlConstantValue::ToString(Type type) { switch (type) { case Type::BOOLEAN: return "a literal boolean"; case Type::INT8: return "an int8 literal"; case Type::INT32: return "an int32 literal"; case Type::INT64: return "an int64 literal"; case Type::ARRAY: return "a literal array"; case Type::CHARACTER: return "a literal char"; case Type::STRING: return "a literal string"; case Type::REF: return "a reference"; case Type::FLOATING: return "a literal float"; case Type::UNARY: return "a unary expression"; case Type::BINARY: return "a binary expression"; case Type::ERROR: AIDL_FATAL(AIDL_LOCATION_HERE) << "aidl internal error: error type failed to halt program"; return ""; default: AIDL_FATAL(AIDL_LOCATION_HERE) << "aidl internal error: unknown constant type: " << static_cast(type); return ""; // not reached } } AidlConstantReference::AidlConstantReference(const AidlLocation& location, const std::string& value) : AidlConstantValue(location, Type::REF, value) { const auto pos = value.find_last_of('.'); if (pos == string::npos) { field_name_ = value; } else { ref_type_ = std::make_unique(location, value.substr(0, pos), false, nullptr, Comments{}); field_name_ = value.substr(pos + 1); } } const AidlConstantValue* AidlConstantReference::Resolve(const AidlDefinedType* scope) const { if (resolved_) return resolved_; const AidlDefinedType* defined_type; if (ref_type_) { defined_type = ref_type_->GetDefinedType(); } else { defined_type = scope; } if (!defined_type) { // This can happen when "const reference" is used in an unsupported way, // but missed in checks there. It works as a safety net. AIDL_ERROR(*this) << "Can't resolve the reference (" << value_ << ")"; return nullptr; } if (auto enum_decl = defined_type->AsEnumDeclaration(); enum_decl) { for (const auto& e : enum_decl->GetEnumerators()) { if (e->GetName() == field_name_) { return resolved_ = e->GetValue(); } } } else { for (const auto& c : defined_type->GetConstantDeclarations()) { if (c->GetName() == field_name_) { return resolved_ = &c->GetValue(); } } } AIDL_ERROR(*this) << "Can't find " << field_name_ << " in " << defined_type->GetName(); return nullptr; } bool AidlConstantReference::CheckValid() const { if (is_evaluated_) return is_valid_; AIDL_FATAL_IF(!resolved_, this) << "Should be resolved first: " << value_; is_valid_ = resolved_->CheckValid(); return is_valid_; } bool AidlConstantReference::evaluate() const { if (is_evaluated_) return is_valid_; AIDL_FATAL_IF(!resolved_, this) << "Should be resolved first: " << value_; is_evaluated_ = true; resolved_->evaluate(); is_valid_ = resolved_->is_valid_; final_type_ = resolved_->final_type_; if (is_valid_) { if (final_type_ == Type::STRING) { final_string_value_ = resolved_->final_string_value_; } else { final_value_ = resolved_->final_value_; } } return is_valid_; } bool AidlUnaryConstExpression::CheckValid() const { if (is_evaluated_) return is_valid_; AIDL_FATAL_IF(unary_ == nullptr, this); is_valid_ = unary_->CheckValid(); if (!is_valid_) { final_type_ = Type::ERROR; return false; } return AidlConstantValue::CheckValid(); } bool AidlUnaryConstExpression::evaluate() const { if (is_evaluated_) { return is_valid_; } is_evaluated_ = true; // Recursively evaluate the expression tree if (!unary_->is_evaluated_) { // TODO(b/142722772) CheckValid() should be called before ValueString() bool success = CheckValid(); success &= unary_->evaluate(); if (!success) { is_valid_ = false; return false; } } if (!IsCompatibleType(unary_->final_type_, op_)) { AIDL_ERROR(unary_) << "'" << op_ << "'" << " is not compatible with " << ToString(unary_->final_type_) << ": " + value_; is_valid_ = false; return false; } if (!unary_->is_valid_) { AIDL_ERROR(unary_) << "Invalid constant unary expression: " + value_; is_valid_ = false; return false; } final_type_ = unary_->final_type_; if (final_type_ == Type::FLOATING) { // don't do anything here. ValueString() will handle everything. is_valid_ = true; return true; } #define CASE_UNARY(__type__) \ return is_valid_ = \ handleUnary(*this, op_, static_cast<__type__>(unary_->final_value_), &final_value_); SWITCH_KIND(final_type_, CASE_UNARY, SHOULD_NOT_REACH(); final_type_ = Type::ERROR; is_valid_ = false; return false;) } bool AidlBinaryConstExpression::CheckValid() const { bool success = false; if (is_evaluated_) return is_valid_; AIDL_FATAL_IF(left_val_ == nullptr, this); AIDL_FATAL_IF(right_val_ == nullptr, this); success = left_val_->CheckValid(); if (!success) { final_type_ = Type::ERROR; AIDL_ERROR(this) << "Invalid left operand in binary expression: " + value_; } success = right_val_->CheckValid(); if (!success) { AIDL_ERROR(this) << "Invalid right operand in binary expression: " + value_; final_type_ = Type::ERROR; } if (final_type_ == Type::ERROR) { is_valid_ = false; return false; } is_valid_ = true; return AidlConstantValue::CheckValid(); } bool AidlBinaryConstExpression::evaluate() const { if (is_evaluated_) { return is_valid_; } is_evaluated_ = true; AIDL_FATAL_IF(left_val_ == nullptr, this); AIDL_FATAL_IF(right_val_ == nullptr, this); // Recursively evaluate the binary expression tree if (!left_val_->is_evaluated_ || !right_val_->is_evaluated_) { // TODO(b/142722772) CheckValid() should be called before ValueString() bool success = CheckValid(); success &= left_val_->evaluate(); success &= right_val_->evaluate(); if (!success) { is_valid_ = false; return false; } } if (!left_val_->is_valid_ || !right_val_->is_valid_) { is_valid_ = false; return false; } is_valid_ = AreCompatibleTypes(left_val_->final_type_, right_val_->final_type_); if (!is_valid_) { AIDL_ERROR(this) << "Cannot perform operation '" << op_ << "' on " << ToString(right_val_->GetType()) << " and " << ToString(left_val_->GetType()) << "."; return false; } bool isArithmeticOrBitflip = OP_IS_BIN_ARITHMETIC || OP_IS_BIN_BITFLIP; // Handle String case first if (left_val_->final_type_ == Type::STRING) { AIDL_FATAL_IF(right_val_->final_type_ != Type::STRING, this); if (!OPEQ("+")) { AIDL_ERROR(this) << "Only '+' is supported for strings, not '" << op_ << "'."; final_type_ = Type::ERROR; is_valid_ = false; return false; } // Remove trailing " from lhs const string& lhs = left_val_->final_string_value_; if (lhs.back() != '"') { AIDL_ERROR(this) << "'" << lhs << "' is missing a trailing quote."; final_type_ = Type::ERROR; is_valid_ = false; return false; } const string& rhs = right_val_->final_string_value_; // Remove starting " from rhs if (rhs.front() != '"') { AIDL_ERROR(this) << "'" << rhs << "' is missing a leading quote."; final_type_ = Type::ERROR; is_valid_ = false; return false; } final_string_value_ = string(lhs.begin(), lhs.end() - 1).append(rhs.begin() + 1, rhs.end()); final_type_ = Type::STRING; return true; } // CASE: + - * / % | ^ & < > <= >= == != if (isArithmeticOrBitflip || OP_IS_BIN_COMP) { // promoted kind for both operands. Type promoted = UsualArithmeticConversion(IntegralPromotion(left_val_->final_type_), IntegralPromotion(right_val_->final_type_)); // result kind. final_type_ = isArithmeticOrBitflip ? promoted // arithmetic or bitflip operators generates promoted type : Type::BOOLEAN; // comparison operators generates bool #define CASE_BINARY_COMMON(__type__) \ return is_valid_ = \ handleBinaryCommon(*this, static_cast<__type__>(left_val_->final_value_), op_, \ static_cast<__type__>(right_val_->final_value_), &final_value_); SWITCH_KIND(promoted, CASE_BINARY_COMMON, SHOULD_NOT_REACH(); final_type_ = Type::ERROR; is_valid_ = false; return false;) } // CASE: << >> string newOp = op_; if (OP_IS_BIN_SHIFT) { // promoted kind for both operands. final_type_ = UsualArithmeticConversion(IntegralPromotion(left_val_->final_type_), IntegralPromotion(right_val_->final_type_)); auto numBits = right_val_->final_value_; if (numBits < 0) { // shifting with negative number of bits is undefined in C. In AIDL it // is defined as shifting into the other direction. newOp = OPEQ("<<") ? ">>" : "<<"; numBits = -numBits; } #define CASE_SHIFT(__type__) \ return is_valid_ = handleShift(*this, static_cast<__type__>(left_val_->final_value_), newOp, \ static_cast<__type__>(numBits), &final_value_); SWITCH_KIND(final_type_, CASE_SHIFT, SHOULD_NOT_REACH(); final_type_ = Type::ERROR; is_valid_ = false; return false;) } // CASE: && || if (OP_IS_BIN_LOGICAL) { final_type_ = Type::BOOLEAN; // easy; everything is bool. return handleLogical(*this, left_val_->final_value_, op_, right_val_->final_value_, &final_value_); } SHOULD_NOT_REACH(); is_valid_ = false; return false; } // Constructor for integer(byte, int, long) // Keep parsed integer & literal AidlConstantValue::AidlConstantValue(const AidlLocation& location, Type parsed_type, int64_t parsed_value, const string& checked_value) : AidlNode(location), type_(parsed_type), value_(checked_value), final_type_(parsed_type), final_value_(parsed_value) { AIDL_FATAL_IF(value_.empty() && type_ != Type::ERROR, location); AIDL_FATAL_IF(type_ != Type::INT8 && type_ != Type::INT32 && type_ != Type::INT64, location); } // Constructor for non-integer(String, char, boolean, float, double) // Keep literal as it is. (e.g. String literal has double quotes at both ends) AidlConstantValue::AidlConstantValue(const AidlLocation& location, Type type, const string& checked_value) : AidlNode(location), type_(type), value_(checked_value), final_type_(type) { AIDL_FATAL_IF(value_.empty() && type_ != Type::ERROR, location); switch (type_) { case Type::INT8: case Type::INT32: case Type::INT64: case Type::ARRAY: AIDL_FATAL(this) << "Invalid type: " << ToString(type_); break; default: break; } } // Constructor for array AidlConstantValue::AidlConstantValue(const AidlLocation& location, Type type, std::unique_ptr>> values, const std::string& value) : AidlNode(location), type_(type), values_(std::move(*values)), value_(value), is_valid_(false), is_evaluated_(false), final_type_(type) { AIDL_FATAL_IF(type_ != Type::ARRAY, location); } AidlUnaryConstExpression::AidlUnaryConstExpression(const AidlLocation& location, const string& op, std::unique_ptr rval) : AidlConstantValue(location, Type::UNARY, op + rval->value_), unary_(std::move(rval)), op_(op) { final_type_ = Type::UNARY; } AidlBinaryConstExpression::AidlBinaryConstExpression(const AidlLocation& location, std::unique_ptr lval, const string& op, std::unique_ptr rval) : AidlConstantValue(location, Type::BINARY, lval->value_ + op + rval->value_), left_val_(std::move(lval)), right_val_(std::move(rval)), op_(op) { final_type_ = Type::BINARY; }