/* SPDX-License-Identifier: GPL-2.0+ */ /* * Copyright (c) 2011 The Chromium OS Authors. */ #ifndef __fdtdec_h #define __fdtdec_h /* * This file contains convenience functions for decoding useful and * enlightening information from FDTs. It is intended to be used by device * drivers and board-specific code within U-Boot. It aims to reduce the * amount of FDT munging required within U-Boot itself, so that driver code * changes to support FDT are minimized. */ #include #include /* * A typedef for a physical address. Note that fdt data is always big * endian even on a litle endian machine. */ typedef phys_addr_t fdt_addr_t; typedef phys_size_t fdt_size_t; #define FDT_SIZE_T_NONE (-1U) #ifdef CONFIG_PHYS_64BIT #define FDT_ADDR_T_NONE ((ulong)(-1)) #define fdt_addr_to_cpu(reg) be64_to_cpu(reg) #define fdt_size_to_cpu(reg) be64_to_cpu(reg) #define cpu_to_fdt_addr(reg) cpu_to_be64(reg) #define cpu_to_fdt_size(reg) cpu_to_be64(reg) typedef fdt64_t fdt_val_t; #else #define FDT_ADDR_T_NONE (-1U) #define fdt_addr_to_cpu(reg) be32_to_cpu(reg) #define fdt_size_to_cpu(reg) be32_to_cpu(reg) #define cpu_to_fdt_addr(reg) cpu_to_be32(reg) #define cpu_to_fdt_size(reg) cpu_to_be32(reg) typedef fdt32_t fdt_val_t; #endif /* Information obtained about memory from the FDT */ struct fdt_memory { fdt_addr_t start; fdt_addr_t end; }; struct bd_info; /** * enum fdt_source_t - indicates where the devicetree came from * * These are listed in approximate order of desirability after FDTSRC_NONE * * @FDTSRC_SEPARATE: Appended to U-Boot. This is the normal approach if U-Boot * is the only firmware being booted * @FDTSRC_FIT: Found in a multi-dtb FIT. This should be used when U-Boot must * select a devicetree from many options * @FDTSRC_BOARD: Located by custom board code. This should only be used when * the prior stage does not support FDTSRC_PASSAGE * @FDTSRC_EMBED: Embedded into U-Boot executable. This should onyl be used when * U-Boot is packaged as an ELF file, e.g. for debugging purposes * @FDTSRC_ENV: Provided by the fdtcontroladdr environment variable. This should * be used for debugging/development only * @FDTSRC_NONE: No devicetree at all */ enum fdt_source_t { FDTSRC_SEPARATE, FDTSRC_FIT, FDTSRC_BOARD, FDTSRC_EMBED, FDTSRC_ENV, }; /* * Information about a resource. start is the first address of the resource * and end is the last address (inclusive). The length of the resource will * be equal to: end - start + 1. */ struct fdt_resource { fdt_addr_t start; fdt_addr_t end; }; enum fdt_pci_space { FDT_PCI_SPACE_CONFIG = 0, FDT_PCI_SPACE_IO = 0x01000000, FDT_PCI_SPACE_MEM32 = 0x02000000, FDT_PCI_SPACE_MEM64 = 0x03000000, FDT_PCI_SPACE_MEM32_PREF = 0x42000000, FDT_PCI_SPACE_MEM64_PREF = 0x43000000, }; #define FDT_PCI_ADDR_CELLS 3 #define FDT_PCI_SIZE_CELLS 2 #define FDT_PCI_REG_SIZE \ ((FDT_PCI_ADDR_CELLS + FDT_PCI_SIZE_CELLS) * sizeof(u32)) /* * The Open Firmware spec defines PCI physical address as follows: * * bits# 31 .... 24 23 .... 16 15 .... 08 07 .... 00 * * phys.hi cell: npt000ss bbbbbbbb dddddfff rrrrrrrr * phys.mid cell: hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh * phys.lo cell: llllllll llllllll llllllll llllllll * * where: * * n: is 0 if the address is relocatable, 1 otherwise * p: is 1 if addressable region is prefetchable, 0 otherwise * t: is 1 if the address is aliased (for non-relocatable I/O) below 1MB * (for Memory), or below 64KB (for relocatable I/O) * ss: is the space code, denoting the address space * bbbbbbbb: is the 8-bit Bus Number * ddddd: is the 5-bit Device Number * fff: is the 3-bit Function Number * rrrrrrrr: is the 8-bit Register Number * hhhhhhhh: is a 32-bit unsigned number * llllllll: is a 32-bit unsigned number */ struct fdt_pci_addr { u32 phys_hi; u32 phys_mid; u32 phys_lo; }; extern u8 __dtb_dt_begin[]; /* embedded device tree blob */ extern u8 __dtb_dt_spl_begin[]; /* embedded device tree blob for SPL/TPL */ /* Get a pointer to the embedded devicetree, if there is one, else NULL */ static inline u8 *dtb_dt_embedded(void) { #ifdef CONFIG_OF_EMBED # ifdef CONFIG_SPL_BUILD return __dtb_dt_spl_begin; # else return __dtb_dt_begin; # endif #else return NULL; #endif } /** * Compute the size of a resource. * * @param res the resource to operate on * Return: the size of the resource */ static inline fdt_size_t fdt_resource_size(const struct fdt_resource *res) { return res->end - res->start + 1; } /** * Compat types that we know about and for which we might have drivers. * Each is named COMPAT__ where is the directory * within drivers. */ enum fdt_compat_id { COMPAT_UNKNOWN, COMPAT_NVIDIA_TEGRA20_EMC, /* Tegra20 memory controller */ COMPAT_NVIDIA_TEGRA20_EMC_TABLE, /* Tegra20 memory timing table */ COMPAT_NVIDIA_TEGRA20_NAND, /* Tegra2 NAND controller */ COMPAT_NVIDIA_TEGRA124_XUSB_PADCTL, /* Tegra124 XUSB pad controller */ COMPAT_NVIDIA_TEGRA210_XUSB_PADCTL, /* Tegra210 XUSB pad controller */ COMPAT_SAMSUNG_EXYNOS_USB_PHY, /* Exynos phy controller for usb2.0 */ COMPAT_SAMSUNG_EXYNOS5_USB3_PHY,/* Exynos phy controller for usb3.0 */ COMPAT_SAMSUNG_EXYNOS_TMU, /* Exynos TMU */ COMPAT_SAMSUNG_EXYNOS_MIPI_DSI, /* Exynos mipi dsi */ COMPAT_SAMSUNG_EXYNOS_DWMMC, /* Exynos DWMMC controller */ COMPAT_GENERIC_SPI_FLASH, /* Generic SPI Flash chip */ COMPAT_SAMSUNG_EXYNOS_SYSMMU, /* Exynos sysmmu */ COMPAT_INTEL_MICROCODE, /* Intel microcode update */ COMPAT_INTEL_QRK_MRC, /* Intel Quark MRC */ COMPAT_ALTERA_SOCFPGA_DWMAC, /* SoCFPGA Ethernet controller */ COMPAT_ALTERA_SOCFPGA_DWMMC, /* SoCFPGA DWMMC controller */ COMPAT_ALTERA_SOCFPGA_DWC2USB, /* SoCFPGA DWC2 USB controller */ COMPAT_INTEL_BAYTRAIL_FSP, /* Intel Bay Trail FSP */ COMPAT_INTEL_BAYTRAIL_FSP_MDP, /* Intel FSP memory-down params */ COMPAT_INTEL_IVYBRIDGE_FSP, /* Intel Ivy Bridge FSP */ COMPAT_SUNXI_NAND, /* SUNXI NAND controller */ COMPAT_ALTERA_SOCFPGA_CLK, /* SoCFPGA Clock initialization */ COMPAT_ALTERA_SOCFPGA_PINCTRL_SINGLE, /* SoCFPGA pinctrl-single */ COMPAT_ALTERA_SOCFPGA_H2F_BRG, /* SoCFPGA hps2fpga bridge */ COMPAT_ALTERA_SOCFPGA_LWH2F_BRG, /* SoCFPGA lwhps2fpga bridge */ COMPAT_ALTERA_SOCFPGA_F2H_BRG, /* SoCFPGA fpga2hps bridge */ COMPAT_ALTERA_SOCFPGA_F2SDR0, /* SoCFPGA fpga2SDRAM0 bridge */ COMPAT_ALTERA_SOCFPGA_F2SDR1, /* SoCFPGA fpga2SDRAM1 bridge */ COMPAT_ALTERA_SOCFPGA_F2SDR2, /* SoCFPGA fpga2SDRAM2 bridge */ COMPAT_ALTERA_SOCFPGA_FPGA0, /* SOCFPGA FPGA manager */ COMPAT_ALTERA_SOCFPGA_NOC, /* SOCFPGA Arria 10 NOC */ COMPAT_ALTERA_SOCFPGA_CLK_INIT, /* SOCFPGA Arria 10 clk init */ COMPAT_COUNT, }; #define MAX_PHANDLE_ARGS 16 struct fdtdec_phandle_args { int node; int args_count; uint32_t args[MAX_PHANDLE_ARGS]; }; /** * fdtdec_parse_phandle_with_args() - Find a node pointed by phandle in a list * * This function is useful to parse lists of phandles and their arguments. * * Example: * * phandle1: node1 { * #list-cells = <2>; * } * * phandle2: node2 { * #list-cells = <1>; * } * * node3 { * list = <&phandle1 1 2 &phandle2 3>; * } * * To get a device_node of the `node2' node you may call this: * fdtdec_parse_phandle_with_args(blob, node3, "list", "#list-cells", 0, 1, * &args); * * (This function is a modified version of __of_parse_phandle_with_args() from * Linux 3.18) * * @blob: Pointer to device tree * @src_node: Offset of device tree node containing a list * @list_name: property name that contains a list * @cells_name: property name that specifies the phandles' arguments count, * or NULL to use @cells_count * @cells_count: Cell count to use if @cells_name is NULL * @index: index of a phandle to parse out * @out_args: optional pointer to output arguments structure (will be filled) * Return: 0 on success (with @out_args filled out if not NULL), -ENOENT if * @list_name does not exist, a phandle was not found, @cells_name * could not be found, the arguments were truncated or there were too * many arguments. * */ int fdtdec_parse_phandle_with_args(const void *blob, int src_node, const char *list_name, const char *cells_name, int cell_count, int index, struct fdtdec_phandle_args *out_args); /** * Find the next numbered alias for a peripheral. This is used to enumerate * all the peripherals of a certain type. * * Do the first call with *upto = 0. Assuming /aliases/0 exists then * this function will return a pointer to the node the alias points to, and * then update *upto to 1. Next time you call this function, the next node * will be returned. * * All nodes returned will match the compatible ID, as it is assumed that * all peripherals use the same driver. * * @param blob FDT blob to use * @param name Root name of alias to search for * @param id Compatible ID to look for * Return: offset of next compatible node, or -FDT_ERR_NOTFOUND if no more */ int fdtdec_next_alias(const void *blob, const char *name, enum fdt_compat_id id, int *upto); /** * Find the compatible ID for a given node. * * Generally each node has at least one compatible string attached to it. * This function looks through our list of known compatible strings and * returns the corresponding ID which matches the compatible string. * * @param blob FDT blob to use * @param node Node containing compatible string to find * Return: compatible ID, or COMPAT_UNKNOWN if we cannot find a match */ enum fdt_compat_id fdtdec_lookup(const void *blob, int node); /** * Find the next compatible node for a peripheral. * * Do the first call with node = 0. This function will return a pointer to * the next compatible node. Next time you call this function, pass the * value returned, and the next node will be provided. * * @param blob FDT blob to use * @param node Start node for search * @param id Compatible ID to look for (enum fdt_compat_id) * Return: offset of next compatible node, or -FDT_ERR_NOTFOUND if no more */ int fdtdec_next_compatible(const void *blob, int node, enum fdt_compat_id id); /** * Find the next compatible subnode for a peripheral. * * Do the first call with node set to the parent and depth = 0. This * function will return the offset of the next compatible node. Next time * you call this function, pass the node value returned last time, with * depth unchanged, and the next node will be provided. * * @param blob FDT blob to use * @param node Start node for search * @param id Compatible ID to look for (enum fdt_compat_id) * @param depthp Current depth (set to 0 before first call) * Return: offset of next compatible node, or -FDT_ERR_NOTFOUND if no more */ int fdtdec_next_compatible_subnode(const void *blob, int node, enum fdt_compat_id id, int *depthp); /* * Look up an address property in a node and return the parsed address, and * optionally the parsed size. * * This variant assumes a known and fixed number of cells are used to * represent the address and size. * * You probably don't want to use this function directly except to parse * non-standard properties, and never to parse the "reg" property. Instead, * use one of the "auto" variants below, which automatically honor the * #address-cells and #size-cells properties in the parent node. * * @param blob FDT blob * @param node node to examine * @param prop_name name of property to find * @param index which address to retrieve from a list of addresses. Often 0. * @param na the number of cells used to represent an address * @param ns the number of cells used to represent a size * @param sizep a pointer to store the size into. Use NULL if not required * @param translate Indicates whether to translate the returned value * using the parent node's ranges property. * Return: address, if found, or FDT_ADDR_T_NONE if not */ fdt_addr_t fdtdec_get_addr_size_fixed(const void *blob, int node, const char *prop_name, int index, int na, int ns, fdt_size_t *sizep, bool translate); /* * Look up an address property in a node and return the parsed address, and * optionally the parsed size. * * This variant automatically determines the number of cells used to represent * the address and size by parsing the provided parent node's #address-cells * and #size-cells properties. * * @param blob FDT blob * @param parent parent node of @node * @param node node to examine * @param prop_name name of property to find * @param index which address to retrieve from a list of addresses. Often 0. * @param sizep a pointer to store the size into. Use NULL if not required * @param translate Indicates whether to translate the returned value * using the parent node's ranges property. * Return: address, if found, or FDT_ADDR_T_NONE if not */ fdt_addr_t fdtdec_get_addr_size_auto_parent(const void *blob, int parent, int node, const char *prop_name, int index, fdt_size_t *sizep, bool translate); /* * Look up an address property in a node and return the parsed address, and * optionally the parsed size. * * This variant automatically determines the number of cells used to represent * the address and size by parsing the parent node's #address-cells * and #size-cells properties. The parent node is automatically found. * * The automatic parent lookup implemented by this function is slow. * Consequently, fdtdec_get_addr_size_auto_parent() should be used where * possible. * * @param blob FDT blob * @param parent parent node of @node * @param node node to examine * @param prop_name name of property to find * @param index which address to retrieve from a list of addresses. Often 0. * @param sizep a pointer to store the size into. Use NULL if not required * @param translate Indicates whether to translate the returned value * using the parent node's ranges property. * Return: address, if found, or FDT_ADDR_T_NONE if not */ fdt_addr_t fdtdec_get_addr_size_auto_noparent(const void *blob, int node, const char *prop_name, int index, fdt_size_t *sizep, bool translate); /* * Look up an address property in a node and return the parsed address. * * This variant hard-codes the number of cells used to represent the address * and size based on sizeof(fdt_addr_t) and sizeof(fdt_size_t). It also * always returns the first address value in the property (index 0). * * Use of this function is not recommended due to the hard-coding of cell * counts. There is no programmatic validation that these hard-coded values * actually match the device tree content in any way at all. This assumption * can be satisfied by manually ensuring CONFIG_PHYS_64BIT is appropriately * set in the U-Boot build and exercising strict control over DT content to * ensure use of matching #address-cells/#size-cells properties. However, this * approach is error-prone; those familiar with DT will not expect the * assumption to exist, and could easily invalidate it. If the assumption is * invalidated, this function will not report the issue, and debugging will * be required. Instead, use fdtdec_get_addr_size_auto_parent(). * * @param blob FDT blob * @param node node to examine * @param prop_name name of property to find * Return: address, if found, or FDT_ADDR_T_NONE if not */ fdt_addr_t fdtdec_get_addr(const void *blob, int node, const char *prop_name); /* * Look up an address property in a node and return the parsed address, and * optionally the parsed size. * * This variant hard-codes the number of cells used to represent the address * and size based on sizeof(fdt_addr_t) and sizeof(fdt_size_t). It also * always returns the first address value in the property (index 0). * * Use of this function is not recommended due to the hard-coding of cell * counts. There is no programmatic validation that these hard-coded values * actually match the device tree content in any way at all. This assumption * can be satisfied by manually ensuring CONFIG_PHYS_64BIT is appropriately * set in the U-Boot build and exercising strict control over DT content to * ensure use of matching #address-cells/#size-cells properties. However, this * approach is error-prone; those familiar with DT will not expect the * assumption to exist, and could easily invalidate it. If the assumption is * invalidated, this function will not report the issue, and debugging will * be required. Instead, use fdtdec_get_addr_size_auto_parent(). * * @param blob FDT blob * @param node node to examine * @param prop_name name of property to find * @param sizep a pointer to store the size into. Use NULL if not required * Return: address, if found, or FDT_ADDR_T_NONE if not */ fdt_addr_t fdtdec_get_addr_size(const void *blob, int node, const char *prop_name, fdt_size_t *sizep); /** * Look at the compatible property of a device node that represents a PCI * device and extract pci vendor id and device id from it. * * @param blob FDT blob * @param node node to examine * @param vendor vendor id of the pci device * @param device device id of the pci device * Return: 0 if ok, negative on error */ int fdtdec_get_pci_vendev(const void *blob, int node, u16 *vendor, u16 *device); /** * Look at the pci address of a device node that represents a PCI device * and return base address of the pci device's registers. * * @param dev device to examine * @param addr pci address in the form of fdt_pci_addr * @param bar returns base address of the pci device's registers * Return: 0 if ok, negative on error */ int fdtdec_get_pci_bar32(const struct udevice *dev, struct fdt_pci_addr *addr, u32 *bar); /** * Look at the bus range property of a device node and return the pci bus * range for this node. * The property must hold one fdt_pci_addr with a length. * @param blob FDT blob * @param node node to examine * @param res the resource structure to return the bus range * Return: 0 if ok, negative on error */ int fdtdec_get_pci_bus_range(const void *blob, int node, struct fdt_resource *res); /** * Look up a 32-bit integer property in a node and return it. The property * must have at least 4 bytes of data. The value of the first cell is * returned. * * @param blob FDT blob * @param node node to examine * @param prop_name name of property to find * @param default_val default value to return if the property is not found * Return: integer value, if found, or default_val if not */ s32 fdtdec_get_int(const void *blob, int node, const char *prop_name, s32 default_val); /** * Unsigned version of fdtdec_get_int. The property must have at least * 4 bytes of data. The value of the first cell is returned. * * @param blob FDT blob * @param node node to examine * @param prop_name name of property to find * @param default_val default value to return if the property is not found * Return: unsigned integer value, if found, or default_val if not */ unsigned int fdtdec_get_uint(const void *blob, int node, const char *prop_name, unsigned int default_val); /** * Get a variable-sized number from a property * * This reads a number from one or more cells. * * @param ptr Pointer to property * @param cells Number of cells containing the number * Return: the value in the cells */ u64 fdtdec_get_number(const fdt32_t *ptr, unsigned int cells); /** * Look up a 64-bit integer property in a node and return it. The property * must have at least 8 bytes of data (2 cells). The first two cells are * concatenated to form a 8 bytes value, where the first cell is top half and * the second cell is bottom half. * * @param blob FDT blob * @param node node to examine * @param prop_name name of property to find * @param default_val default value to return if the property is not found * Return: integer value, if found, or default_val if not */ uint64_t fdtdec_get_uint64(const void *blob, int node, const char *prop_name, uint64_t default_val); /** * Checks whether a node is enabled. * This looks for a 'status' property. If this exists, then returns 1 if * the status is 'ok' and 0 otherwise. If there is no status property, * it returns 1 on the assumption that anything mentioned should be enabled * by default. * * @param blob FDT blob * @param node node to examine * Return: integer value 0 (not enabled) or 1 (enabled) */ int fdtdec_get_is_enabled(const void *blob, int node); /** * Make sure we have a valid fdt available to control U-Boot. * * If not, a message is printed to the console if the console is ready. * * Return: 0 if all ok, -1 if not */ int fdtdec_prepare_fdt(void); /** * Checks that we have a valid fdt available to control U-Boot. * However, if not then for the moment nothing is done, since this function * is called too early to panic(). * * @returns 0 */ int fdtdec_check_fdt(void); /** * Find the nodes for a peripheral and return a list of them in the correct * order. This is used to enumerate all the peripherals of a certain type. * * To use this, optionally set up a /aliases node with alias properties for * a peripheral. For example, for usb you could have: * * aliases { * usb0 = "/ehci@c5008000"; * usb1 = "/ehci@c5000000"; * }; * * Pass "usb" as the name to this function and will return a list of two * nodes offsets: /ehci@c5008000 and ehci@c5000000. * * All nodes returned will match the compatible ID, as it is assumed that * all peripherals use the same driver. * * If no alias node is found, then the node list will be returned in the * order found in the fdt. If the aliases mention a node which doesn't * exist, then this will be ignored. If nodes are found with no aliases, * they will be added in any order. * * If there is a gap in the aliases, then this function return a 0 node at * that position. The return value will also count these gaps. * * This function checks node properties and will not return nodes which are * marked disabled (status = "disabled"). * * @param blob FDT blob to use * @param name Root name of alias to search for * @param id Compatible ID to look for * @param node_list Place to put list of found nodes * @param maxcount Maximum number of nodes to find * Return: number of nodes found on success, FDT_ERR_... on error */ int fdtdec_find_aliases_for_id(const void *blob, const char *name, enum fdt_compat_id id, int *node_list, int maxcount); /* * This function is similar to fdtdec_find_aliases_for_id() except that it * adds to the node_list that is passed in. Any 0 elements are considered * available for allocation - others are considered already used and are * skipped. * * You can use this by calling fdtdec_find_aliases_for_id() with an * uninitialised array, then setting the elements that are returned to -1, * say, then calling this function, perhaps with a different compat id. * Any elements you get back that are >0 are new nodes added by the call * to this function. * * Note that if you have some nodes with aliases and some without, you are * sailing close to the wind. The call to fdtdec_find_aliases_for_id() with * one compat_id may fill in positions for which you have aliases defined * for another compat_id. When you later call *this* function with the second * compat_id, the alias positions may already be used. A debug warning may * be generated in this case, but it is safest to define aliases for all * nodes when you care about the ordering. */ int fdtdec_add_aliases_for_id(const void *blob, const char *name, enum fdt_compat_id id, int *node_list, int maxcount); /** * Get the alias sequence number of a node * * This works out whether a node is pointed to by an alias, and if so, the * sequence number of that alias. Aliases are of the form where * is the sequence number. For example spi2 would be sequence number * 2. * * @param blob Device tree blob (if NULL, then error is returned) * @param base Base name for alias (before the underscore) * @param node Node to look up * @param seqp This is set to the sequence number if one is found, * but otherwise the value is left alone * Return: 0 if a sequence was found, -ve if not */ int fdtdec_get_alias_seq(const void *blob, const char *base, int node, int *seqp); /** * Get the highest alias number for susbystem. * * It parses all aliases and find out highest recorded alias for subsystem. * Aliases are of the form where is the sequence number. * * @param blob Device tree blob (if NULL, then error is returned) * @param base Base name for alias susbystem (before the number) * * Return: 0 highest alias ID, -1 if not found */ int fdtdec_get_alias_highest_id(const void *blob, const char *base); /** * Get a property from the /chosen node * * @param blob Device tree blob (if NULL, then NULL is returned) * @param name Property name to look up * Return: Value of property, or NULL if it does not exist */ const char *fdtdec_get_chosen_prop(const void *blob, const char *name); /** * Get the offset of the given /chosen node * * This looks up a property in /chosen containing the path to another node, * then finds the offset of that node. * * @param blob Device tree blob (if NULL, then error is returned) * @param name Property name, e.g. "stdout-path" * Return: Node offset referred to by that chosen node, or -ve FDT_ERR_... */ int fdtdec_get_chosen_node(const void *blob, const char *name); /* * Get the name for a compatible ID * * @param id Compatible ID to look for * Return: compatible string for that id */ const char *fdtdec_get_compatible(enum fdt_compat_id id); /* Look up a phandle and follow it to its node. Then return the offset * of that node. * * @param blob FDT blob * @param node node to examine * @param prop_name name of property to find * Return: node offset if found, -ve error code on error */ int fdtdec_lookup_phandle(const void *blob, int node, const char *prop_name); /** * Look up a property in a node and return its contents in an integer * array of given length. The property must have at least enough data for * the array (4*count bytes). It may have more, but this will be ignored. * * @param blob FDT blob * @param node node to examine * @param prop_name name of property to find * @param array array to fill with data * @param count number of array elements * Return: 0 if ok, or -FDT_ERR_NOTFOUND if the property is not found, * or -FDT_ERR_BADLAYOUT if not enough data */ int fdtdec_get_int_array(const void *blob, int node, const char *prop_name, u32 *array, int count); /** * Look up a property in a node and return its contents in an integer * array of given length. The property must exist but may have less data that * expected (4*count bytes). It may have more, but this will be ignored. * * @param blob FDT blob * @param node node to examine * @param prop_name name of property to find * @param array array to fill with data * @param count number of array elements * Return: number of array elements if ok, or -FDT_ERR_NOTFOUND if the * property is not found */ int fdtdec_get_int_array_count(const void *blob, int node, const char *prop_name, u32 *array, int count); /** * Look up a property in a node and return a pointer to its contents as a * unsigned int array of given length. The property must have at least enough * data for the array ('count' cells). It may have more, but this will be * ignored. The data is not copied. * * Note that you must access elements of the array with fdt32_to_cpu(), * since the elements will be big endian even on a little endian machine. * * @param blob FDT blob * @param node node to examine * @param prop_name name of property to find * @param count number of array elements * Return: pointer to array if found, or NULL if the property is not * found or there is not enough data */ const u32 *fdtdec_locate_array(const void *blob, int node, const char *prop_name, int count); /** * Look up a boolean property in a node and return it. * * A boolean properly is true if present in the device tree and false if not * present, regardless of its value. * * @param blob FDT blob * @param node node to examine * @param prop_name name of property to find * Return: 1 if the properly is present; 0 if it isn't present */ int fdtdec_get_bool(const void *blob, int node, const char *prop_name); /* * Count child nodes of one parent node. * * @param blob FDT blob * @param node parent node * Return: number of child node; 0 if there is not child node */ int fdtdec_get_child_count(const void *blob, int node); /** * Look in the FDT for a config item with the given name and return its value * as a 32-bit integer. The property must have at least 4 bytes of data. The * value of the first cell is returned. * * @param blob FDT blob to use * @param prop_name Node property name * @param default_val default value to return if the property is not found * @return integer value, if found, or default_val if not */ int fdtdec_get_config_int(const void *blob, const char *prop_name, int default_val); /** * Look in the FDT for a config item with the given name and return its value * as a string. * * @param blob FDT blob * @param prop_name property name to look up * @returns property string, NULL on error. */ char *fdtdec_get_config_string(const void *blob, const char *prop_name); /* * Look up a property in a node and return its contents in a byte * array of given length. The property must have at least enough data for * the array (count bytes). It may have more, but this will be ignored. * * @param blob FDT blob * @param node node to examine * @param prop_name name of property to find * @param array array to fill with data * @param count number of array elements * Return: 0 if ok, or -FDT_ERR_MISSING if the property is not found, * or -FDT_ERR_BADLAYOUT if not enough data */ int fdtdec_get_byte_array(const void *blob, int node, const char *prop_name, u8 *array, int count); /** * Look up a property in a node and return a pointer to its contents as a * byte array of given length. The property must have at least enough data * for the array (count bytes). It may have more, but this will be ignored. * The data is not copied. * * @param blob FDT blob * @param node node to examine * @param prop_name name of property to find * @param count number of array elements * Return: pointer to byte array if found, or NULL if the property is not * found or there is not enough data */ const u8 *fdtdec_locate_byte_array(const void *blob, int node, const char *prop_name, int count); /** * Obtain an indexed resource from a device property. * * @param fdt FDT blob * @param node node to examine * @param property name of the property to parse * @param index index of the resource to retrieve * @param res returns the resource * Return: 0 if ok, negative on error */ int fdt_get_resource(const void *fdt, int node, const char *property, unsigned int index, struct fdt_resource *res); /** * Obtain a named resource from a device property. * * Look up the index of the name in a list of strings and return the resource * at that index. * * @param fdt FDT blob * @param node node to examine * @param property name of the property to parse * @param prop_names name of the property containing the list of names * @param name the name of the entry to look up * @param res returns the resource */ int fdt_get_named_resource(const void *fdt, int node, const char *property, const char *prop_names, const char *name, struct fdt_resource *res); /* Display timings from linux include/video/display_timing.h */ enum display_flags { DISPLAY_FLAGS_HSYNC_LOW = 1 << 0, DISPLAY_FLAGS_HSYNC_HIGH = 1 << 1, DISPLAY_FLAGS_VSYNC_LOW = 1 << 2, DISPLAY_FLAGS_VSYNC_HIGH = 1 << 3, /* data enable flag */ DISPLAY_FLAGS_DE_LOW = 1 << 4, DISPLAY_FLAGS_DE_HIGH = 1 << 5, /* drive data on pos. edge */ DISPLAY_FLAGS_PIXDATA_POSEDGE = 1 << 6, /* drive data on neg. edge */ DISPLAY_FLAGS_PIXDATA_NEGEDGE = 1 << 7, DISPLAY_FLAGS_INTERLACED = 1 << 8, DISPLAY_FLAGS_DOUBLESCAN = 1 << 9, DISPLAY_FLAGS_DOUBLECLK = 1 << 10, }; /* * A single signal can be specified via a range of minimal and maximal values * with a typical value, that lies somewhere inbetween. */ struct timing_entry { u32 min; u32 typ; u32 max; }; /* * Single "mode" entry. This describes one set of signal timings a display can * have in one setting. This struct can later be converted to struct videomode * (see include/video/videomode.h). As each timing_entry can be defined as a * range, one struct display_timing may become multiple struct videomodes. * * Example: hsync active high, vsync active low * * Active Video * Video ______________________XXXXXXXXXXXXXXXXXXXXXX_____________________ * |<- sync ->|<- back ->|<----- active ----->|<- front ->|<- sync.. * | | porch | | porch | * * HSync _|¯¯¯¯¯¯¯¯¯¯|___________________________________________|¯¯¯¯¯¯¯¯¯ * * VSync ¯|__________|¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯|_________ */ struct display_timing { struct timing_entry pixelclock; struct timing_entry hactive; /* hor. active video */ struct timing_entry hfront_porch; /* hor. front porch */ struct timing_entry hback_porch; /* hor. back porch */ struct timing_entry hsync_len; /* hor. sync len */ struct timing_entry vactive; /* ver. active video */ struct timing_entry vfront_porch; /* ver. front porch */ struct timing_entry vback_porch; /* ver. back porch */ struct timing_entry vsync_len; /* ver. sync len */ enum display_flags flags; /* display flags */ bool hdmi_monitor; /* is hdmi monitor? */ }; /** * fdtdec_decode_display_timing() - decode display timings * * Decode display timings from the supplied 'display-timings' node. * See doc/device-tree-bindings/video/display-timing.txt for binding * information. * * @param blob FDT blob * @param node 'display-timing' node containing the timing subnodes * @param index Index number to read (0=first timing subnode) * @param config Place to put timings * Return: 0 if OK, -FDT_ERR_NOTFOUND if not found */ int fdtdec_decode_display_timing(const void *blob, int node, int index, struct display_timing *config); /** * fdtdec_setup_mem_size_base() - decode and setup gd->ram_size and * gd->ram_start * * Decode the /memory 'reg' property to determine the size and start of the * first memory bank, populate the global data with the size and start of the * first bank of memory. * * This function should be called from a boards dram_init(). This helper * function allows for boards to query the device tree for DRAM size and start * address instead of hard coding the value in the case where the memory size * and start address cannot be detected automatically. * * Return: 0 if OK, -EINVAL if the /memory node or reg property is missing or * invalid */ int fdtdec_setup_mem_size_base(void); /** * fdtdec_setup_mem_size_base_lowest() - decode and setup gd->ram_size and * gd->ram_start by lowest available memory base * * Decode the /memory 'reg' property to determine the lowest start of the memory * bank bank and populate the global data with it. * * This function should be called from a boards dram_init(). This helper * function allows for boards to query the device tree for DRAM size and start * address instead of hard coding the value in the case where the memory size * and start address cannot be detected automatically. * * Return: 0 if OK, -EINVAL if the /memory node or reg property is missing or * invalid */ int fdtdec_setup_mem_size_base_lowest(void); /** * fdtdec_setup_memory_banksize() - decode and populate gd->bd->bi_dram * * Decode the /memory 'reg' property to determine the address and size of the * memory banks. Use this data to populate the global data board info with the * phys address and size of memory banks. * * This function should be called from a boards dram_init_banksize(). This * helper function allows for boards to query the device tree for memory bank * information instead of hard coding the information in cases where it cannot * be detected automatically. * * Return: 0 if OK, -EINVAL if the /memory node or reg property is missing or * invalid */ int fdtdec_setup_memory_banksize(void); /** * fdtdec_set_ethernet_mac_address() - set MAC address for default interface * * Looks up the default interface via the "ethernet" alias (in the /aliases * node) and stores the given MAC in its "local-mac-address" property. This * is useful on platforms that store the MAC address in a custom location. * Board code can call this in the late init stage to make sure that the * interface device tree node has the right MAC address configured for the * Ethernet uclass to pick it up. * * Typically the FDT passed into this function will be U-Boot's control DTB. * Given that a lot of code may be holding offsets to various nodes in that * tree, this code will only set the "local-mac-address" property in-place, * which means that it needs to exist and have space for the 6-byte address. * This ensures that the operation is non-destructive and does not invalidate * offsets that other drivers may be using. * * @param fdt FDT blob * @param mac buffer containing the MAC address to set * @param size size of MAC address * Return: 0 on success or a negative error code on failure */ int fdtdec_set_ethernet_mac_address(void *fdt, const u8 *mac, size_t size); /** * fdtdec_set_phandle() - sets the phandle of a given node * * @param blob FDT blob * @param node offset in the FDT blob of the node whose phandle is to * be set * @param phandle phandle to set for the given node * Return: 0 on success or a negative error code on failure */ static inline int fdtdec_set_phandle(void *blob, int node, uint32_t phandle) { return fdt_setprop_u32(blob, node, "phandle", phandle); } /* add "no-map" property */ #define FDTDEC_RESERVED_MEMORY_NO_MAP (1 << 0) /** * fdtdec_add_reserved_memory() - add or find a reserved-memory node * * If a reserved-memory node already exists for the given carveout, a phandle * for that node will be returned. Otherwise a new node will be created and a * phandle corresponding to it will be returned. * * See Documentation/devicetree/bindings/reserved-memory/reserved-memory.txt * for details on how to use reserved memory regions. * * As an example, consider the following code snippet: * * struct fdt_memory fb = { * .start = 0x92cb3000, * .end = 0x934b2fff, * }; * uint32_t phandle; * * fdtdec_add_reserved_memory(fdt, "framebuffer", &fb, NULL, 0, &phandle, * 0); * * This results in the following subnode being added to the top-level * /reserved-memory node: * * reserved-memory { * #address-cells = <0x00000002>; * #size-cells = <0x00000002>; * ranges; * * framebuffer@92cb3000 { * reg = <0x00000000 0x92cb3000 0x00000000 0x00800000>; * phandle = <0x0000004d>; * }; * }; * * If the top-level /reserved-memory node does not exist, it will be created. * The phandle returned from the function call can be used to reference this * reserved memory region from other nodes. * * See fdtdec_set_carveout() for a more elaborate example. * * @param blob FDT blob * @param basename base name of the node to create * @param carveout information about the carveout region * @param compatibles list of compatible strings for the carveout region * @param count number of compatible strings for the carveout region * @param phandlep return location for the phandle of the carveout region * can be NULL if no phandle should be added * @param flags bitmask of flags to set for the carveout region * Return: 0 on success or a negative error code on failure */ int fdtdec_add_reserved_memory(void *blob, const char *basename, const struct fdt_memory *carveout, const char **compatibles, unsigned int count, uint32_t *phandlep, unsigned long flags); /** * fdtdec_get_carveout() - reads a carveout from an FDT * * Reads information about a carveout region from an FDT. The carveout is a * referenced by its phandle that is read from a given property in a given * node. * * @param blob FDT blob * @param node name of a node * @param prop_name name of the property in the given node that contains * the phandle for the carveout * @param index index of the phandle for which to read the carveout * @param carveout return location for the carveout information * @param name return location for the carveout name * @param compatiblesp return location for compatible strings * @param countp return location for the number of compatible strings * @param flags return location for the flags of the carveout * Return: 0 on success or a negative error code on failure */ int fdtdec_get_carveout(const void *blob, const char *node, const char *prop_name, unsigned int index, struct fdt_memory *carveout, const char **name, const char ***compatiblesp, unsigned int *countp, unsigned long *flags); /** * fdtdec_set_carveout() - sets a carveout region for a given node * * Sets a carveout region for a given node. If a reserved-memory node already * exists for the carveout, the phandle for that node will be reused. If no * such node exists, a new one will be created and a phandle to it stored in * a specified property of the given node. * * As an example, consider the following code snippet: * * const char *node = "/host1x@50000000/dc@54240000"; * struct fdt_memory fb = { * .start = 0x92cb3000, * .end = 0x934b2fff, * }; * * fdtdec_set_carveout(fdt, node, "memory-region", 0, "framebuffer", NULL, * 0, &fb, 0); * * dc@54200000 is a display controller and was set up by the bootloader to * scan out the framebuffer specified by "fb". This would cause the following * reserved memory region to be added: * * reserved-memory { * #address-cells = <0x00000002>; * #size-cells = <0x00000002>; * ranges; * * framebuffer@92cb3000 { * reg = <0x00000000 0x92cb3000 0x00000000 0x00800000>; * phandle = <0x0000004d>; * }; * }; * * A "memory-region" property will also be added to the node referenced by the * offset parameter. * * host1x@50000000 { * ... * * dc@54240000 { * ... * memory-region = <0x0000004d>; * ... * }; * * ... * }; * * @param blob FDT blob * @param node name of the node to add the carveout to * @param prop_name name of the property in which to store the phandle of * the carveout * @param index index of the phandle to store * @param carveout information about the carveout to add * @param name base name of the reserved-memory node to create * @param compatibles compatible strings to set for the carveout * @param count number of compatible strings * @param flags bitmask of flags to set for the carveout * Return: 0 on success or a negative error code on failure */ int fdtdec_set_carveout(void *blob, const char *node, const char *prop_name, unsigned int index, const struct fdt_memory *carveout, const char *name, const char **compatibles, unsigned int count, unsigned long flags); /** * Set up the device tree ready for use */ int fdtdec_setup(void); /** * Perform board-specific early DT adjustments */ int fdtdec_board_setup(const void *fdt_blob); /** * fdtdec_resetup() - Set up the device tree again * * The main difference with fdtdec_setup() is that it returns if the fdt has * changed because a better match has been found. * This is typically used for boards that rely on a DM driver to detect the * board type. This function sould be called by the board code after the stuff * needed by board_fit_config_name_match() to operate porperly is available. * If this functions signals that a rescan is necessary, the board code must * unbind all the drivers using dm_uninit() and then rescan the DT with * dm_init_and_scan(). * * @param rescan Returns a flag indicating that fdt has changed and rescanning * the fdt is required * * Return: 0 if OK, -ve on error */ int fdtdec_resetup(int *rescan); /** * Board-specific FDT initialization. Returns the address to a device tree blob. * * Called when CONFIG_OF_BOARD is defined. * * The existing devicetree is available at gd->fdt_blob * * @err internal error code if we fail to setup a DTB * @returns new devicetree blob pointer */ void *board_fdt_blob_setup(int *err); /* * Decode the size of memory * * RAM size is normally set in a /memory node and consists of a list of * (base, size) cells in the 'reg' property. This information is used to * determine the total available memory as well as the address and size * of each bank. * * Optionally the memory configuration can vary depending on a board id, * typically read from strapping resistors or an EEPROM on the board. * * Finally, memory size can be detected (within certain limits) by probing * the available memory. It is safe to do so within the limits provides by * the board's device tree information. This makes it possible to produce * boards with different memory sizes, where the device tree specifies the * maximum memory configuration, and the smaller memory configuration is * probed. * * This function decodes that information, returning the memory base address, * size and bank information. See the memory.txt binding for full * documentation. * * @param blob Device tree blob * @param area Name of node to check (NULL means "/memory") * @param board_id Board ID to look up * @param basep Returns base address of first memory bank (NULL to * ignore) * @param sizep Returns total memory size (NULL to ignore) * @param bd Updated with the memory bank information (NULL to skip) * Return: 0 if OK, -ve on error */ int fdtdec_decode_ram_size(const void *blob, const char *area, int board_id, phys_addr_t *basep, phys_size_t *sizep, struct bd_info *bd); /** * fdtdec_get_srcname() - Get the name of where the devicetree comes from * * Return: source name */ const char *fdtdec_get_srcname(void); #endif