/* SPDX-License-Identifier: GPL-2.0+ */ /* * Copyright (C) 2018 Exceet Electronics GmbH * Copyright (C) 2018 Bootlin * * Author: * Peter Pan * Boris Brezillon */ #ifndef __UBOOT_SPI_MEM_H #define __UBOOT_SPI_MEM_H #include #include #include struct udevice; #define SPI_MEM_OP_CMD(__opcode, __buswidth) \ { \ .buswidth = __buswidth, \ .opcode = __opcode, \ .nbytes = 1, \ } #define SPI_MEM_OP_ADDR(__nbytes, __val, __buswidth) \ { \ .nbytes = __nbytes, \ .val = __val, \ .buswidth = __buswidth, \ } #define SPI_MEM_OP_NO_ADDR { } #define SPI_MEM_OP_DUMMY(__nbytes, __buswidth) \ { \ .nbytes = __nbytes, \ .buswidth = __buswidth, \ } #define SPI_MEM_OP_NO_DUMMY { } #define SPI_MEM_OP_DATA_IN(__nbytes, __buf, __buswidth) \ { \ .dir = SPI_MEM_DATA_IN, \ .nbytes = __nbytes, \ .buf.in = __buf, \ .buswidth = __buswidth, \ } #define SPI_MEM_OP_DATA_OUT(__nbytes, __buf, __buswidth) \ { \ .dir = SPI_MEM_DATA_OUT, \ .nbytes = __nbytes, \ .buf.out = __buf, \ .buswidth = __buswidth, \ } #define SPI_MEM_OP_NO_DATA { } /** * enum spi_mem_data_dir - describes the direction of a SPI memory data * transfer from the controller perspective * @SPI_MEM_NO_DATA: no data transferred * @SPI_MEM_DATA_IN: data coming from the SPI memory * @SPI_MEM_DATA_OUT: data sent the SPI memory */ enum spi_mem_data_dir { SPI_MEM_NO_DATA, SPI_MEM_DATA_IN, SPI_MEM_DATA_OUT, }; /** * struct spi_mem_op - describes a SPI memory operation * @cmd.nbytes: number of opcode bytes (only 1 or 2 are valid). The opcode is * sent MSB-first. * @cmd.buswidth: number of IO lines used to transmit the command * @cmd.opcode: operation opcode * @cmd.dtr: whether the command opcode should be sent in DTR mode or not * @addr.nbytes: number of address bytes to send. Can be zero if the operation * does not need to send an address * @addr.buswidth: number of IO lines used to transmit the address cycles * @addr.val: address value. This value is always sent MSB first on the bus. * Note that only @addr.nbytes are taken into account in this * address value, so users should make sure the value fits in the * assigned number of bytes. * @addr.dtr: whether the address should be sent in DTR mode or not * @dummy.nbytes: number of dummy bytes to send after an opcode or address. Can * be zero if the operation does not require dummy bytes * @dummy.buswidth: number of IO lanes used to transmit the dummy bytes * @dummy.dtr: whether the dummy bytes should be sent in DTR mode or not * @data.buswidth: number of IO lanes used to send/receive the data * @data.dtr: whether the data should be sent in DTR mode or not * @data.dir: direction of the transfer * @data.buf.in: input buffer * @data.buf.out: output buffer */ struct spi_mem_op { struct { u8 nbytes; u8 buswidth; u8 dtr : 1; u16 opcode; } cmd; struct { u8 nbytes; u8 buswidth; u8 dtr : 1; u64 val; } addr; struct { u8 nbytes; u8 buswidth; u8 dtr : 1; } dummy; struct { u8 buswidth; u8 dtr : 1; enum spi_mem_data_dir dir; unsigned int nbytes; /* buf.{in,out} must be DMA-able. */ union { void *in; const void *out; } buf; } data; }; #define SPI_MEM_OP(__cmd, __addr, __dummy, __data) \ { \ .cmd = __cmd, \ .addr = __addr, \ .dummy = __dummy, \ .data = __data, \ } #ifndef __UBOOT__ /** * struct spi_mem - describes a SPI memory device * @spi: the underlying SPI device * @drvpriv: spi_mem_driver private data * * Extra information that describe the SPI memory device and may be needed by * the controller to properly handle this device should be placed here. * * One example would be the device size since some controller expose their SPI * mem devices through a io-mapped region. */ struct spi_mem { struct udevice *dev; void *drvpriv; }; /** * struct spi_mem_set_drvdata() - attach driver private data to a SPI mem * device * @mem: memory device * @data: data to attach to the memory device */ static inline void spi_mem_set_drvdata(struct spi_mem *mem, void *data) { mem->drvpriv = data; } /** * struct spi_mem_get_drvdata() - get driver private data attached to a SPI mem * device * @mem: memory device * * Return: the data attached to the mem device. */ static inline void *spi_mem_get_drvdata(struct spi_mem *mem) { return mem->drvpriv; } #endif /* __UBOOT__ */ /** * struct spi_controller_mem_ops - SPI memory operations * @adjust_op_size: shrink the data xfer of an operation to match controller's * limitations (can be alignment of max RX/TX size * limitations) * @supports_op: check if an operation is supported by the controller * @exec_op: execute a SPI memory operation * * This interface should be implemented by SPI controllers providing an * high-level interface to execute SPI memory operation, which is usually the * case for QSPI controllers. */ struct spi_controller_mem_ops { int (*adjust_op_size)(struct spi_slave *slave, struct spi_mem_op *op); bool (*supports_op)(struct spi_slave *slave, const struct spi_mem_op *op); int (*exec_op)(struct spi_slave *slave, const struct spi_mem_op *op); }; #ifndef __UBOOT__ /** * struct spi_mem_driver - SPI memory driver * @spidrv: inherit from a SPI driver * @probe: probe a SPI memory. Usually where detection/initialization takes * place * @remove: remove a SPI memory * @shutdown: take appropriate action when the system is shutdown * * This is just a thin wrapper around a spi_driver. The core takes care of * allocating the spi_mem object and forwarding the probe/remove/shutdown * request to the spi_mem_driver. The reason we use this wrapper is because * we might have to stuff more information into the spi_mem struct to let * SPI controllers know more about the SPI memory they interact with, and * having this intermediate layer allows us to do that without adding more * useless fields to the spi_device object. */ struct spi_mem_driver { struct spi_driver spidrv; int (*probe)(struct spi_mem *mem); int (*remove)(struct spi_mem *mem); void (*shutdown)(struct spi_mem *mem); }; #if IS_ENABLED(CONFIG_SPI_MEM) int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr, const struct spi_mem_op *op, struct sg_table *sg); void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr, const struct spi_mem_op *op, struct sg_table *sg); #else static inline int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr, const struct spi_mem_op *op, struct sg_table *sg) { return -ENOSYS; } static inline void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr, const struct spi_mem_op *op, struct sg_table *sg) { } #endif /* CONFIG_SPI_MEM */ #endif /* __UBOOT__ */ int spi_mem_adjust_op_size(struct spi_slave *slave, struct spi_mem_op *op); bool spi_mem_supports_op(struct spi_slave *slave, const struct spi_mem_op *op); bool spi_mem_dtr_supports_op(struct spi_slave *slave, const struct spi_mem_op *op); bool spi_mem_default_supports_op(struct spi_slave *slave, const struct spi_mem_op *op); int spi_mem_exec_op(struct spi_slave *slave, const struct spi_mem_op *op); bool spi_mem_default_supports_op(struct spi_slave *mem, const struct spi_mem_op *op); #ifndef __UBOOT__ int spi_mem_driver_register_with_owner(struct spi_mem_driver *drv, struct module *owner); void spi_mem_driver_unregister(struct spi_mem_driver *drv); #define spi_mem_driver_register(__drv) \ spi_mem_driver_register_with_owner(__drv, THIS_MODULE) #define module_spi_mem_driver(__drv) \ module_driver(__drv, spi_mem_driver_register, \ spi_mem_driver_unregister) #endif #endif /* __LINUX_SPI_MEM_H */