
 

 

 

®

 

 

 

 

 

 

 

 

Xtensa Audio Framework (Hosted) 
Programmer’s Guide 

 

 
 
 

For Xtensa HiFi Audio Engines 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Cadence Design Systems, Inc. 
2655 Seely Ave. 

San Jose, CA 95134 
www.cadence.com 



 Xtensa Audio Framework (Hostless) Programmer's Guide 

II  CADENCE DESIGN SYSTEMS, INC. / CONFIDENTIAL  

 
© 2016 Cadence Design Systems, Inc. 
All Rights Reserved 

 

 

This publication is provided “AS IS.” Cadence Design Systems, Inc. (hereafter “Cadence") does not make any warranty of any kind, either 
expressed or implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Information in 
this document is provided solely to enable system and software developers to use our processors. Unless specifically set forth herein, there 
are no express or implied patent, copyright or any other intellectual property rights or licenses granted hereunder to design or fabricate 
Cadence integrated circuits or integrated circuits based on the information in this document. Cadence does not warrant that the contents of this 
publication, whether individually or as one or more groups, meets your requirements or that the publication is error-free. This publication could 
include technical inaccuracies or typographical errors. Changes may be made to the information herein, and these changes may be 
incorporated in new editions of this publication.  

 

 

© 2016 Cadence, the Cadence logo, Allegro, Assura, Broadband Spice, CDNLIVE!, Celtic, Chipestimate.com, Conformal, Connections, Denali, 
Diva, Dracula, Encounter, Flashpoint, FLIX, First Encounter, Incisive, Incyte, InstallScape, NanoRoute, NC-Verilog, OrCAD, OSKit, Palladium, 
PowerForward, PowerSI, PSpice, Purespec, Puresuite, Quickcycles, SignalStorm, Sigrity, SKILL, SoC Encounter, SourceLink, Spectre, 
Specman, Specman-Elite, SpeedBridge, Stars & Strikes, Tensilica, TripleCheck, TurboXim, Vectra, Virtuoso, VoltageStorm, Xplorer, Xtensa, 
and Xtreme are either trademarks or registered trademarks of Cadence Design Systems, Inc. in the United States and/or other jurisdictions.  

 

OSCI, SystemC, Open SystemC, Open SystemC Initiative, and SystemC Initiative are registered trademarks of Open SystemC Initiative, Inc. in 
the United States and other countries and are used with permission. All other trademarks are the property of their respective holders.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Version 0.6 

February 2018 

 

 



Xtensa Audio Framework (Hostless) Programmer's Guide   

  CADENCE DESIGN SYSTEMS, INC. / CONFIDENTIAL III 

Contents 

1. Introduction to  Xtensa Audio Framework ....................................................................... 1 

1.1 Document Overview .................................................................................................. 1 

1.2 Xtensa Audio Framework Specifications ................................................................... 2 

1.2.1 Terminology ........................................................................................................... 2 
1.2.2 Feature Set ............................................................................................................ 4 

1.3 Xtensa Audio Framework Performance .................................................................... 5 

1.3.1 Memory .................................................................................................................. 6 
1.3.2 Timings .................................................................................................................. 8 

2. Xtensa Audio Framework  Architecture Overview .......................................................... 9 

2.1 Xtensa Audio Framework Building Blocks ................................................................. 9 

2.1.1 Applications ........................................................................................................... 9 
2.1.2 Host Framework .................................................................................................. 10 
2.1.3 DSP Framework .................................................................................................. 10 
2.1.4 IPC Interface ........................................................................................................ 10 
2.1.5 Audio Components .............................................................................................. 10 

3. Xtensa Audio Framework Developer APIs .................................................................... 11 

3.1 Files Specific to Developer APIs ............................................................................. 13 

3.2 Developer API-Specific Error Codes ....................................................................... 13 

3.2.1 Common API Errors............................................................................................. 14 
3.2.2 Specific Errors ..................................................................................................... 14 

3.3 Developer APIs ........................................................................................................ 15 

4. Xtensa Audio Framework  Sample Applications ........................................................... 31 

4.1 Build and Execute using makefile............................................................................ 33 

5. Integration of New Audio Components with XAF .......................................................... 34 

5.1 Component Modification .......................................................................................... 34 

5.2 Component Integration ............................................................................................ 34 

5.3 Component Integration – Example .......................................................................... 37 

6. Known Issues ................................................................................................................ 38 

7. Appendix: Memory Guidelines ...................................................................................... 39 

8. References .................................................................................................................... 41 
 



 Xtensa Audio Framework (Hostless) Programmer's Guide 

IV  CADENCE DESIGN SYSTEMS, INC. / CONFIDENTIAL  

Figures  

Figure 1-1 Terminology ............................................................................................................. 3 

Figure 2-1  Software Stack Diagram ......................................................................................... 9 

Figure 3-1 Flowgraph Sequence for API Calls ........................................................................ 12 

Figure 4-1 (pcm-gain) Block Diagram ..................................................................................... 31 

Figure 4-2 (dec) Block Diagram............................................................................................... 31 

 

Tables 

Table 1-1  Component types ..................................................................................................... 4 

Table 1-2  Library Memory ........................................................................................................ 6 

Table 1-3  Runtime Memory ...................................................................................................... 6 

Table 1-4  MCPS ....................................................................................................................... 8 

Table 3-1  xaf_adev_open API ............................................................................................ 15 

Table 3-2  xaf_adev_close API .......................................................................................... 17 

Table 3-3  xaf_comp_create API ........................................................................................ 18 

Table 3-4  xaf_comp_delete API ........................................................................................ 21 

Table 3-5  xaf_comp_set_config API ............................................................................... 22 

Table 3-6  xaf_comp_get_config API ............................................................................... 23 

Table 3-7  xaf_connect API ................................................................................................. 24 

Table 3-8  xaf_comp_process API ...................................................................................... 25 

Table 3-9  xaf_comp_get_status API ............................................................................... 28 

Table 3-10  xaf_get_verinfo API ...................................................................................... 30 

Table 5-1  Example components ............................................................................................. 37 

 

 

 



Xtensa Audio Framework (Hostless) Programmer's Guide   

V  CADENCE DESIGN SYSTEMS, INC. / CONFIDENTIAL  

Document Change History 
 

Version Changes 

0.6 Alpha release  

 
  



 Xtensa Audio Framework (Hostless) Programmer's Guide 

VI  CADENCE DESIGN SYSTEMS, INC. / CONFIDENTIAL  

 

 



Xtensa Audio Framework (Hostless) Programmer's Guide   

1  CADENCE DESIGN SYSTEMS, INC. / CONFIDENTIAL  

1. Introduction to  
Xtensa Audio Framework 

Xtensa Audio Framework (XAF) is a framework designed to accelerate the development of audio 

processing applications for the HiFi family of DSP cores. Application developers may choose 

components from the rich portfolio of audio and speech libraries already developed by Cadence 

and its ecosystem partners. In addition, customers may also package their proprietary 

algorithms and components and integrate them into the framework. Towards this goal, a 

simplified “Developer API” is defined, which enables application developers to rapidly create an 

end application and focus more on using the available components. XAF is designed to work on 

both the instruction set simulator as well as actual hardware. 

The version of XAF described in this guide is designed to work on actual hardware with Host 

CPU and HiFi DSP (that is, a “hosted” solution). Note, this version of XAF is ported and tested 

on HiKey960 Board where Host CPU runs Android operating system.  

XAF is part of the “HiFi Integrator Studio” suite of tools. 

1.1 Document Overview 

This guide covers all the information required to create, configure, and run audio processing 

chains using XAF developer APIs. Section 2 briefly describes the XAF architecture, and Section 

3 provides details about developer APIs available for the application developer. Section 4 

provides details about building and running a sample application, which illustrates usage of the 

developer APIs. Section 5 provides a “How To” guide for adding support for a new component 

in XAF. 

Instructions on how to run the XAF on the HiKey960 Board have been provided in a companion 

document [1]. 

  



 Xtensa Audio Framework (Hostless) Programmer's Guide 

  CADENCE DESIGN SYSTEMS, INC. / CONFIDENTIAL 2 

1.2 Xtensa Audio Framework Specifications 

This section provides XAF specifications, including the operating system. 

1.2.1 Terminology 

The following terms are used within this guide. 

Audio Device: The software abstraction of a digital signal processor (DSP) core. 

Component: A software module that conforms to a specified interface and runs on the audio 

device. It would implement some audio processing functionality. 

Port: An interface through which a component can connect to other components and exchange 

data. Each port may be connected to only one port of another component. A component must 

have at least one port. 

Input Port: A port through which a component can receive data from another component. A 

component may have 0 or more input ports. 

Output Port: A port through which a component can send data to another component. A 

component may have 0 or more output ports. 

Link: The connection between the output port of one component and the input port of another 

component. 

Buffer: Memory block containing data that is transferred over a link between two ports.  

Chain: A graph formed by connecting different components by links. 

Framework: A software entity that enable the creation of an audio processing chain. It manages 

the transfer of buffers between ports as well as the scheduling of the different components in 

the chain. 

Application: A software entity that uses the framework to create a chain. It is the responsibility 

of the application to provide input data to the chain and consume the output data generated by 

the chain. 

  



Xtensa Audio Framework (Hostless) Programmer's GuideGuide  

3  CADENCE DESIGN SYSTEMS, INC. / CONFIDENTIAL  

Figure 1-1 shows the terms above in a diagrammatic form, with an example chain. 

 

Figure 1-1 Terminology 

  

Chain 

Output 

port 
Input 

port 

Output 

port 

Input 

port 

A1 

Input 

port 

Input 

port 

Output 

port 

Component 

A 

Component 

B 

Component 

C 

Framework 

Buffer management Scheduler etc... 

  

Application 

Buffers 

  Component 

Link 

Port 

Legend 

Audio Device 



 Xtensa Audio Framework (Hostless) Programmer's Guide 

  CADENCE DESIGN SYSTEMS, INC. / CONFIDENTIAL 4 

1.2.2 Feature Set 

API features: 

Ability to create components and connect them in a chain. 

Ability to read and write component configuration parameters. 

Ability to read component status and trigger component processing. 

XAF features: 

Manages the scheduling of components in the chain. No explicit restriction on the complexity of 
the component chain, i.e., the number of components/links is restricted by the memory/MHz 
resources available and not by XAF. 

Manages the allocation of memory for data buffers. Number of data buffers is 0, 1, or 2 for input 
ports and 0 or 1 for output ports. The number of buffers on a link between two ports can be 
increased at component connection stage. 

Manages the allocation of memory for itself and created components. Dynamic memory 
allocation within XAF is done through an allocation function registered by the application. This 
allows the application to control the memory type/region for the allocation. 

Manages the data transfer between components. The buffering of data to match the different 
block sizes between two connected components is also managed by XAF. As XAF merely 
transfers the data between components, there is no restriction on the actual format of the data. 

Component types supported (See Table 1-1), depending on the number of ports and the type 
of data transferred across the ports (PCM or non-PCM). 

Table 1-1  Component types 

Component 
Type 

Input Output Component Description 

Ports PCM Ports PCM 

Decoder 1 N 1 Y Decodes input compressed data to 
generate output PCM data. 

Encoder 1 Y 1 N Encodes input PCM data to generate 
output compressed data. 

Mixer 4 Y 1 Y Combines input PCM data from multiple 
ports to generate one output PCM data. 

Pre-
processing 

1 Y 1 Y Pre-processes input PCM data to 
generate output PCM data. 

Post 
processing 

1 Y 1 Y Post-processes input PCM data to 
generate output PCM data. 

Package features: 

One example test application provided to demonstrate various use-cases. 



Xtensa Audio Framework (Hostless) Programmer's GuideGuide  

5  CADENCE DESIGN SYSTEMS, INC. / CONFIDENTIAL  

Example code to demonstrate the integration of two Cadence audio libraries (Ogg Vorbis 
decoder, PCM gain library) into XAF is included in this package. Note that some of these libraries 
may need to be licensed separately. 

Compile time flags provided to support detailed analysis and debugging 

 Tracing: Enables printing of detailed component scheduling information (Set 

TRACE = 1 while building, disabled by default). 

 Debugging: Disables optimization and enables debugger information (Set DEBUG 
= 1 while building, disabled by default). 

 Profiling: Measurement of component and XAF MHz. (Set XAF_PROFILE = 1 
while building, enabled by default). 

Support for HiKey960 Board[1] along with detailed instructions on board setup. 

RTOS: 

XAF requires a real-time operating system (RTOS) on Host CPU for multithreaded execution, 
Inter Processor Communication (IPC) interface, mutual exclusion for accessing shared 
resources, etc. This version of XAF supports Android [1] (only) as the RTOS. Support for other 
RTOS variants will be added in future versions. 

Limitations: 

Code for the components needs to be linked into the application. Dynamic loading of code is not 
supported. 

API enhancements to disconnect components from a graph and to pause/resume the graph are 
planned in future releases. 

Only one instance of XAF can run at a time. 

Known Issues: 

1.3 Xtensa Audio Framework Performance 

The performance was characterized on the 5-stage Audio Engine processor cores. The memory 

usage and performance figures are provided for design reference. 

 

  



 Xtensa Audio Framework (Hostless) Programmer's Guide 

  CADENCE DESIGN SYSTEMS, INC. / CONFIDENTIAL 6 

1.3.1 Memory 

Table 1-2  Library Memory 

XAF Module Text (Kbytes) ROData  

(Kbytes) 

HiFi3 DSP Firmware Library 39.5 9.0 

ARM64 XAF Host Library 20.4 0.7 

 

Note Above memory measurements are for XAF on HiKey960 Board set up. 

Note The HiFi3 DSP Firmware Library measurements were done with Version 7.0.5 of 
the Xtensa tool chain and it excludes memory required by audio components (i.e. 
Ogg Vorbis Decoder, PCM Gain and Mixer components).  

The total runtime memory allocated can be divided into two categories: 

1. Local memory used by XAF on AP: This memory is allocated by AP for XAF 

data structures. 

2. Local memory used by XAF on DSP: This memory is allocated by DSP for 

usage by audio components.  

3. Shared memory between AP and DSP for IPC: This memory is shared by AP 

and DSP for Inter Processor Communication (IPC) between AP and DSP (i.e. 

for sharing messages and audio data). 

Table 1-3 shows the runtime memory allocated by XAF for a simple processing chain. 

No Memory breakup 
RAM (Kbytes) 

HiFi 3 

1 Local memory used by XAF on AP 4  

2 Local memory used by XAF on DSP 1030  

3 Shared memory between AP and DSP 
for IPC  256  

 Total memory 1290 

 

Note Above memory measurements are for XAF on HiKey960 Board set up. 

Note ‘Local memory used by XAF on AP’ mentioned above is for use cases 
demonstrated by xaf-dec-test and xaf-dec-mix-test. 

Note ‘Local memory used by XAF on DSP’ and ‘Shared memory between AP and 
DSP’ are allocated to higher values for XAF on HiKey960 Board set up. To 
compute exact sizes required by any audio processing chain, please refer to 
Appendix 7. 

Note The HiFi3 DSP measurements were done with Version 7.0.5 of the Xtensa tool 
chain. 

Table 1-3  Runtime Memory 
 



Xtensa Audio Framework (Hostless) Programmer's GuideGuide  

7  CADENCE DESIGN SYSTEMS, INC. / CONFIDENTIAL  

  



 Xtensa Audio Framework (Hostless) Programmer's Guide 

  CADENCE DESIGN SYSTEMS, INC. / CONFIDENTIAL 8 

1.3.2 Timings 

Table 1-4 contains details for the MCPS usage by the audio processing chain on DSP. The 

“Average CPU Load” MCPS are the total MHz consumed by the DSP for executing the use case 

through XAF.  

Table 1-4  MCPS 

Testbench Use Case MCPS for Average CPU 
Load (MHz) 

   HiFi 3 

xaf-dec-test Ogg-Vorbis Decoder                      
(Stereo, 48 KHz, 16 bits/sample) 

XAF DSP 
46 

xaf-dec-test PCM gain                                        
(Stereo, 48 KHz, 16 bits/sample) 

XAF DSP 
14 

xaf-dec-mix-test Ogg-Vorbis Decoder (2 instances) + Mixer 
(Stereo, 48 KHz, 16 bits/sample) 

XAF DSP 
83 

xaf-dec-mix-test PCM Gain (2 instances) + Mixer    
(Stereo, 48 KHz, 16 bits/sample) 

XAF DSP 
42 

 

Note Above memory measurements are for XAF on HiKey960 Board set up. 

Note The measurements were done with Version 7.0.5 of the Xtensa tool chain. 

 



Xtensa Audio Framework (Hostless) Programmer's GuideGuide  

9  CADENCE DESIGN SYSTEMS, INC. / CONFIDENTIAL  

2. Xtensa Audio Framework  
Architecture Overview 

2.1 Xtensa Audio Framework Building Blocks 

The following figure shows various building blocks of applications based on XAF. Note that in 

this figure the gray blocks are not part of XAF. 

 

Figure 2-1  Software Stack Diagram 

2.1.1 Applications 

In this application space, an application developer will leverage the developer API to create a 

processing chain and Host CPU Operating System (Android) to handle multiple threads. As 

such, XAF enables chains to be set up and configured.  



 Xtensa Audio Framework (Hostless) Programmer's Guide 

  CADENCE DESIGN SYSTEMS, INC. / CONFIDENTIAL 10 

The developer API is the interface between the Application space and XAF. 

Note that XAF allows an unlimited number of components in the audio processing chain — the 

limitation is only from the system hardware. The system developer must ensure that there is 

enough memory and CPU bandwidth available on the hardware. 

2.1.2 Host Framework 

Host framework implements Developer API and underlying Proxy library. Host framework is 

responsible for sending the commands to DSP framework and receive responses from DSP 

framework. 

2.1.3 DSP Framework 

This block interfaces between the host framework and the audio processing components. It also 

performs all memory management for audio processing chains. It receives commands from 

applications and sends the responses back. 

It also manages the data buffers between each individual audio component. Note that each 

audio component running in the audio processing chain may consume and produce a different 

amount of data. The decoder component from Cadence consumes one encoded frame and 

produces one output PCM frame in one execution call. For example, the MP3 decoder from 

Cadence may consume 2048 bytes (largest encoded frame size) and produce one output PCM 

frame of 4608 bytes (1152 samples, stereo channel, 16-bit data). Post process components 

from Cadence generally consume and produce a variable block size (from a pre-defined set) in 

one execution call. 

2.1.4 IPC Interface 

Inter Processor Communication (IPC) interface is hardware specific module and is responsible 

for communication between Host CPU and HiFi DSP with appropriate interrupts.  

2.1.5 Audio Components 

Audio components, used by the Applications, can be connected to form chains with a cascade 

or parallel interface. Except for the mixer, each audio component type can have one input and 

one output stream. The Mixer Component type can have up to four input streams and one output 

stream. Section 5 contains details on how to add a new component. 



Xtensa Audio Framework (Hostless) Programmer's GuideGuide  

11  CADENCE DESIGN SYSTEMS, INC. / CONFIDENTIAL  

3. Xtensa Audio Framework Developer 
APIs 

This section discusses XAF developer APIs that are available for the application programmer to 

create, configure and run audio processing chains. 

Figure 3-1 shows the flow graph for a typical application. 

 



 Xtensa Audio Framework (Hostless) Programmer's Guide 

  CADENCE DESIGN SYSTEMS, INC. / CONFIDENTIAL 12 

 

 

Figure 3-1 Flowgraph Sequence for API Calls 

  



Xtensa Audio Framework (Hostless) Programmer's GuideGuide  

13  CADENCE DESIGN SYSTEMS, INC. / CONFIDENTIAL  

Following is a brief description of the flowgraph sequence: 

Initialize XAF: The XAF is initialized by calling xaf_adev_open. The framework memory 

allocation is performed at this stage. 

Create Processing Chain: The various components in the chain are instantiated by calling 

xaf_comp_create for each component. Then, the component configuration parameters (if 

any) are set using xaf_comp_set_config. Finally, the components are connected together 

using xaf_connect. 

Process data: Input and output data is passed to the components using xaf_comp_process. 

This must be performed only for components that need to be supplied with input/output data 
(typically the edge components of the chain). The component status should be queried using 

xaf_comp_status. This stage continues until all the data has been processed. 

Delete Processing Chain: The various components of the chain are deleted by calling 

xaf_comp_delete. 

Terminate XAF: The XAF is terminated by calling xaf_adev_close. The memory allocated by 

the framework is freed at this stage. 

3.1 Files Specific to Developer APIs 

Developer API Header File (/include/)  

xaf-api.h  

3.2 Developer API-Specific Error Codes 

The errors in this section can result from the developer API layer of the Xtensa Audio 

Framework. All errors are fatal (unrecoverable) errors. In response to an error, the function 

xaf_adev_close(p_adev, 0) may be called to close the device and release resources used 

by XAF. 

  



 Xtensa Audio Framework (Hostless) Programmer's Guide 

  CADENCE DESIGN SYSTEMS, INC. / CONFIDENTIAL 14 

3.2.1 Common API Errors 

XAF_PTR_ERROR 

This error indicates that a null pointer was passed to the developer API where a 

valid pointer was expected. 

XAF_INVALID_VALUE 

This error code indicates that an invalid value (out of valid range) was passed to the 

developer API. 

XAF_API_ERR 

This error code indicates a developer API call sequence error, for example, 

xaf_comp_create() is called before xaf_adev_open(). 

3.2.2 Specific Errors 

The following error is specific to some APIs. 

XAF_ROUTING_ERROR 

This error code indicates that the developer API was unable to connect 

(xaf_connect() call) the two requested components. 

  



Xtensa Audio Framework (Hostless) Programmer's GuideGuide  

15  CADENCE DESIGN SYSTEMS, INC. / CONFIDENTIAL  

3.3 Developer APIs 

This section contains tables describing the developer APIs.  

Table 3-1  xaf_adev_open API 

API XAF_ERR_CODE xaf_adev_open(pVOID *p_adev, 

                  WORD32 audio_frmwk_buf_size, 

                  WORD32 audio_comp_buf_size, 

                  xaf_mem_malloc_fxn_t mem_malloc, 

                  xaf_mem_free_fxn_t mem_free) 

 

Description This API opens and initializes the audio device structure. It also 
memory maps shared memory for the framework. 

Actual Parameters p_adev  

Pointer to audio device handle which will be returned with the valid 
pointer to audio device structure. 

 

audio_frmwk_buf_size 

Unused in this release. 

 

audio_comp_buf_size 

Unused in this release. 

mem_malloc 

Function pointer to testbench implementation of memory allocation. 

The ‘id’ indicates whether the memory is allocated for device 

(DEV_ID) or for component (COMP_ID). 

pVOID mem_malloc(WORD32 size, WORD32 id); 

 

Note: XAF expects that mem_malloc should return a 4-byte aligned 

address. 

 

mem_free 

Function Pointer to testbench implementation of memory free 

VOID mem_free(pVOID ptr, WORD32 id); 

 

Restrictions OnOnly one instance of XAF can run at a time.  

 

Example 

ret = xaf_adev_open(&p_adev, 

    0, 



 Xtensa Audio Framework (Hostless) Programmer's Guide 

  CADENCE DESIGN SYSTEMS, INC. / CONFIDENTIAL 16 

    0, 

    &mem_malloc, 

    &mem_free); 

Errors 

Common API Errors 

  



Xtensa Audio Framework (Hostless) Programmer's GuideGuide  

17  CADENCE DESIGN SYSTEMS, INC. / CONFIDENTIAL  

Table 3-2  xaf_adev_close API 

API XAF_ERR_CODE xaf_adev_close(pVOID p_adev, 

xaf_comp_flag flag) 

 

Description This API closes the Audio Device and frees up allocated memory. 

Actual Parameters p_adev  

Pointer to the audio device 

flag  

Unused in this release. 

Restrictions Should not be called before xaf_adev_open API. All components 

must be deleted before closing the audio device. 

 

Example 

ret = xaf_adev_close(p_adev, 0); 

Errors 

Common API Errors 

  



 Xtensa Audio Framework (Hostless) Programmer's Guide 

  CADENCE DESIGN SYSTEMS, INC. / CONFIDENTIAL 18 

Table 3-3  xaf_comp_create API 

API XAF_ERR_CODE xaf_comp_create(pVOID p_adev, 

                          pVOID *p_comp, 

                          xf_id_t comp_id, 

                          UWORD32 ninbuf,  

                          UWORD32 noutbuf,  

                          pVOID pp_inbuf[],  

                          xaf_comp_type comp_type) 

Description This API creates the Audio Component. The component is identified by 

comp_id and comp_type. You can specify the number of input and output 

buffers for the component. The IO buffer requirement is dependent upon the 
position of the component in the audio processing chain – see the parameter 
description below for details. 



Xtensa Audio Framework (Hostless) Programmer's GuideGuide  

19  CADENCE DESIGN SYSTEMS, INC. / CONFIDENTIAL  

Actual 
Parameters 

p_adev  

Pointer to the audio device structure 

 

p_comp  

Pointer to the audio component structure (should be one of the available audio 
components). This pointer will be allocated and returned with a valid pointer 
to allocated component structure. 

 

comp_id 

Component Identifier string. e.g. “mixer”, “audio-decoder/mp3”, etc. It should 

match with class_id’s defined under the constant definition of 

xf_component_id in xa-factory.c file. (Refer to Section 5.2, Step 6) 

 

ninbuf  

Unsigned integer containing the number of input buffers. This is the number 
of buffers that the testbench needs to pass to the component. For components 
connected in the chain where it receives input from other components, this 
must be configured as zero (0). 

Valid values: 0, 1, 2. 

 

noutbuf  

Unsigned integer containing the number of output buffers. This is the number 
of buffers that the component passes to the testbench as output. For 
components connected in the chain where the output is passed to another 
component, this must be configured as zero (0). 

Valid values: 0, 1. 

 

pp_inbuf 

Pointer to the array to hold ninbuf input buffer addresses that have been 

allocated within XAF. If the pointer is NULL, the input buffer addresses will not 
be returned. 

 

type 

Type of audio component 

Following are valid values: 

Type Description 

XAF_DECODER:      Decoder component 

XAF_ENCODER:      Encoder component 

XAF_MIXER: Mixer component 

XAF_PRE_PROC: Preprocessing component 

XAF_POST_PROC:     Post processing 
component 

 

Restrictions Should not be called before xaf_adev_open 



 Xtensa Audio Framework (Hostless) Programmer's Guide 

  CADENCE DESIGN SYSTEMS, INC. / CONFIDENTIAL 20 

Example 

ret = xaf_comp_create(p_adev, 

     &p_audioComp, 

     "comp_id", 

     N_INP_BUFF, 

     N_OUT_BUFF, 

     & inbuf[0], 

     XAF_POST_PROC); 

Errors 

Common API Errors 

 
 
  



Xtensa Audio Framework (Hostless) Programmer's GuideGuide  

21  CADENCE DESIGN SYSTEMS, INC. / CONFIDENTIAL  

Table 3-4  xaf_comp_delete API 

API XAF_ERR_CODE xaf_comp_delete(pVOID p_comp) 

 

Description This API deletes the Audio Component and frees the memory 
associated with it. 

Actual Parameters p_comp  

Pointer to the audio component structure 

Restrictions Should not be called before xaf_comp_create 

 

Example 

ret = xaf_comp_delete(p_audioComp); 

 

Errors 

Common API Errors 

 
 
 
  



 Xtensa Audio Framework (Hostless) Programmer's Guide 

  CADENCE DESIGN SYSTEMS, INC. / CONFIDENTIAL 22 

Table 3-5  xaf_comp_set_config API 

API XAF_ERR_CODE xaf_comp_set_config( 

                               pVOID p_comp, 

                               WORD32 num_param, 

                               pWORD32 p_param) 

 

Description This API sets (writes) configuration parameters to the Audio 

Component.num_param provides the number of configuration parameters to 

be set.p_param points to an array containing ID/value pairs for all 

num_param parameters. 

For example, for two parameters, p_param will contain ID1, VAL1, ID2, 

VAL2. 

Actual 
Parameters 

p_comp  

Pointer to the audio component structure 

 

num_param  

Integer containing the number of parameters to be set.  
The maximum limit is 16. 

 

p_param  

Pointer to an integer array containing ID/Value pairs – i.e., parameter ID 
followed by parameter value. 

 

Restrictions Should not be called before xaf_comp_create 

 

Example 

ret = xaf_comp_set_config(p_comp, 

    N_PARAMS, 

    &param[0]); 

Errors 

Common API Errors 

 
  



Xtensa Audio Framework (Hostless) Programmer's GuideGuide  

23  CADENCE DESIGN SYSTEMS, INC. / CONFIDENTIAL  

Table 3-6  xaf_comp_get_config API 

API XAF_ERR_CODE xaf_comp_get_config( 

                               pVOID p_comp, 

                               WORD32 num_param, 

                               pWORD32 p_param) 

 

Description This API gets (reads) configuration parameters from the Audio 

Component.num_param provides the number of configuration parameters 

to get.p_param points to an array containing ID/value pairs for all 

num_param parameters. 

 

For example, for two parameters, p_param will contain ID1, VAL1, ID2, 

VAL2. VAL1 and VAL2 can contain any arbitrary value, as they will be over-
written when the function returns. 

 

Upon successful execution of this API, the value field of the ID/value pair 
will be set to the correct value. 

Actual 
Parameters 

p_comp  

Pointer to the audio component structure 

 

num_param  

Integer containing the number of parameters to get.  
The maximum limit is 16. 

 

p_param  

Pointer to an integer array containing ID/Value pairs – i.e., parameter ID 
followed by parameter value. 

Restrictions Should not be called before xaf_comp_create 

Example 

ret = xaf_comp_get_config(p_comp, 

    N_PARAMS, 

    &param[0]); 

Errors 

Common API Errors  



 Xtensa Audio Framework (Hostless) Programmer's Guide 

  CADENCE DESIGN SYSTEMS, INC. / CONFIDENTIAL 24 

Table 3-7  xaf_connect API 

API XAF_ERR_CODE xaf_connect(pVOID p_src, 

                         pVOID p_dest, 

                         WORD32 num_buf) 

Description This API connects the output port of audio component p_src to the 

input port of audio component p_dest with num_buf buffers 

between them. The size of these buffers will be equal to the size of 

the output buffer of p_src . 

 

This API will fail if there are no free input or output ports on Audio 
Components. Audio Components have input and output ports as 
follows: 

Component Type Input Ports Output Ports 

XAF_DECODER or 

XAF_ENCODER or 

XAF_PRE_PROC or 

XAF_POST_PROC      

1 1 

XAF_MIXER 4 1 
   

 

Actual Parameters p_src  

Pointer to the source audio component structure 
 

p_dest  

Pointer to the destination audio component structure 
 

num_buf  

Number of buffers to be added between components 

Valid values: 2, 3, 4 

Restrictions Should not be called before at least two audio components are 

created using xaf_comp_create. 

Example 

ret = xaf_connect(p_audioComp1, 

 p_audioComp2, 

 N_BUFFS); 

Errors 

Common API Errors 

XAF_ROUTING_ERROR 

 Indicates that the API was unable to connect the two requested components  



Xtensa Audio Framework (Hostless) Programmer's GuideGuide  

25  CADENCE DESIGN SYSTEMS, INC. / CONFIDENTIAL  

Table 3-8  xaf_comp_process API 

API XAF_ERR_CODE xaf_comp_process(pVOID p_adev, 

                              pVOID p_comp, 

                              pVOID p_buf, 

                              UWORD32 length, 

                              xaf_comp_flag flag) 

 

Description This API is the main process function for the audio component; it will 
do Audio Component start, initialization, execution, and wrap-up 

based on the process flag provided to it. This API needs to be 

called only for components that need to be supplied with input/output 
data, typically the edge components of the chain. 

After processing has started, this API should be called until end of 

stream, alternatively along with xaf_comp_get_status API. The 

value to be set for the parameter ‘flag’ depends on the status 

returned by the xaf_comp_get_status API. 

 

Note: This API is asynchronous, i.e., it delivers the process 
command to the audio component and returns. The audio 
component will process this request when all required resources (IO 
buffers, CPU, etc.) from the processing chain are available. The 
status of this process command can be probed by the API described 
in Table 3-9. 

Note: The pointer to an audio device (p_adev) is not required and 

can be passed as NULL during the execution phase of the audio 
component (after the component is initialized). 



 Xtensa Audio Framework (Hostless) Programmer's Guide 

  CADENCE DESIGN SYSTEMS, INC. / CONFIDENTIAL 26 

Actual Parameters p_adev  

Pointer to the audio device structure 

 

p_comp  

Pointer to the audio component structure 

 

p_buf  

Pointer to the input buffer with the input data or output buffer to be 
filled 

 

length 

Unsigned integer containing the length of buffer in bytes 

 

process_flag – Process flag 

Following are valid values: 

Flag Description 

XAF_START_FLAG     Initiates processing, to be called 
only once for each component, 
during initialization. 

XAF_EXEC_FLAG Executes, to be called only once for 
each component to start 
processing. 

XAF_INPUT_OVER_FLAG Indicates input is complete, when 

xaf_comp_get_status returns 

XAF_NEED_INPUT, and input 

stream is exhausted. 

XAF_INPUT_READY_FLAG Indicates input buffer availability, 

when xaf_comp_get_status 

returns XAF_NEED_INPUT, and 

input data is available. 

XAF_NEED_OUTPUT_FLAG Request for output, when 

xaf_comp_get_status returns 

XAF_OUTPUT_READY, and size 

returned in xaf_info_t structure 

is non-zero. 

  
 

Restrictions Should not be called before xaf_comp_create 

 

  



Xtensa Audio Framework (Hostless) Programmer's GuideGuide  

27  CADENCE DESIGN SYSTEMS, INC. / CONFIDENTIAL  

Example 

ret = xaf_comp_process( p_adev, 

  p_audioComp, 

  &Buff, 

  length, 

  compFlag); 

Errors 

Common API Errors 

 
 
  



 Xtensa Audio Framework (Hostless) Programmer's Guide 

  CADENCE DESIGN SYSTEMS, INC. / CONFIDENTIAL 28 

Table 3-9  xaf_comp_get_status API 

API XAF_ERR_CODE xaf_comp_get_status(    

                        pVOID p_adev, 

                        pVOID p_comp, 

                        xaf_comp_status *p_status, 

                        xaf_info_t *p_info) 

 

Description This API returns the status of the audio component and associated 

information. p_adev and p_comp should point to the valid audio 

device and audio component structures respectively. This API will 
return one of following status and associated information. 

Note: This API is a blocking API, i.e., it may block for status from the 
DSP thread for a previously issued process command. 

Actual Parameters p_adev  

Pointer to the audio device structure 

 

p_comp  

Pointer to the audio component structure 

 

p_status  

Pointer to get the audio component status 

Valid values are: 

Flag Description p_info 

XAF_STARTING  Started  

XAF_INIT_DONE Initialization complete  

XAF_NEED_INPUT Component needs 
data 

Buffer pointer, 
size in bytes 

XAF_OUTPUT_READY Component has 
generated output 

Buffer pointer, 
size in bytes 

XAF_EXEC_DONE Execution done  

 

p_info  

Pointer to component information structure to get information from the 

audio component associated with its status. When the p_status 

returned is XAF_STARTING or XAF_INIT_DONE, this buffer is not 

updated. 

Restrictions Should not be called before xaf_comp_create 

 

  



Xtensa Audio Framework (Hostless) Programmer's GuideGuide  

29  CADENCE DESIGN SYSTEMS, INC. / CONFIDENTIAL  

Example 

ret = xaf_comp_get_status(p_adev, 

    p_audioComp, 

    &compStatus, 

    &Info[0]); 

Errors 

Common API Errors 

  



 Xtensa Audio Framework (Hostless) Programmer's Guide 

  CADENCE DESIGN SYSTEMS, INC. / CONFIDENTIAL 30 

Table 3-10  xaf_get_verinfo API 

API XAF_ERR_CODE xaf_get_verinfo (pUWORD8 ver_info[3]) 

 

Description This API gets the version information from the XAF library. It returns 
an array of the following three strings. 

 

ver_info[0]   Library name 

ver_info[1]   Library version 

ver_info[2]   API version 

 

Actual Parameters ver_info 

Pointer to array of three strings 

 

Restrictions NOT IMPLEMENTED IN ALPHA RELEASE 

 

Example 

ret = xaf_get_verinfo(&versionInfo[0]); 

Errors 

Common API Errors 

 
 
 
 
 
 
 



Xtensa Audio Framework (Hostless) Programmer's GuideGuide  

31  CADENCE DESIGN SYSTEMS, INC. / CONFIDENTIAL  

4. Xtensa Audio Framework  
Sample Applications 

Two sample applications (testbenches) are provided, which implement two different audio 

processing chains as described below. Audio components and links are shown in blue in the 

diagrams below. 

Testbench 1 (xaf_dec_test) applies gain to PCM streams when ‘.pcm’ file is fed as input. 

The output is written to dec-out.pcm file. 

 

Figure 4-1 Testbench 1 (pcm-gain) Block Diagram 

Testbench 1 also (xaf_dec_test) decodes Ogg Vorbis streams when ‘.ogg’ file is fed as 

input. The output is written to dec-out.pcm file. 

 

Figure 4-2 Testbench 1 (decoder) Block Diagram 

Testbench 2 (xaf-dec-mix-test) decodes two Ogg Vorbis streams and mixes the output. 

The output is written to dec-mix-out.pcm file. 

Input PCM 
File 

Output 
PCM File  PCM gain 

Input Ogg 
Vorbis File 

Output 
PCM File  

Ogg Vorbis 
Decoder 



 Xtensa Audio Framework (Hostless) Programmer's Guide 

  CADENCE DESIGN SYSTEMS, INC. / CONFIDENTIAL 32 

 

Figure 4-3 Testbench 2 (dec-mix) Block Diagram 

 

Testbench specific source files (/host-apf/utest/)  

xaf-dec-test.c 

xaf-dec-mix-test.c 

  

Input Ogg 
Vorbis    
File 1 

Ogg Vorbis 
Decoder 1 

Input Ogg 
Vorbis    
File 2 

Mixer 

Ogg Vorbis 
Decoder 2 

Output 
PCM File  



Xtensa Audio Framework (Hostless) Programmer's GuideGuide  

33  CADENCE DESIGN SYSTEMS, INC. / CONFIDENTIAL  

Common testbench source files (/host-apf/utest/) 

. 

xaf-mem-test.c – Memory allocation functions. 

xaf-utils-test.c – Other shared utility functions. 

  

4.1 Build and Execute using makefile 

To build and execute sample application, please refer to companion document [1] describing how 
to run the XAF on the HiKey960 Board. 

 

 



 Xtensa Audio Framework (Hostless) Programmer's Guide 

  CADENCE DESIGN SYSTEMS, INC. / CONFIDENTIAL 34 

5. Integration of New Audio Components 
with XAF 

This section describes how to create an application with a new audio component in addition to 

the existing example audio components. The source code pertaining to new audio component 

and library needs to be added in DSP framework. 

5.1 Component Modification 

The new component must be modified as follows: 

1. Change the component interface to conform to the HiFi Audio/Speech Codec 
Application Programming Interface [2][3]. The interface (API) is a C-callable API that is 
exposed by all the HiFi based Audio/Speech Codecs developed by Cadence. An “audio 
codec” is a generic term for any audio processing component and is not restricted to 
encoders and decoders. 

2. XAF requires all components to support the following configuration parameters for the 
PCM data ports. 

3. XA_CODEC_CONFIG_PARAM_CHANNELS: Number of channels. 

4. XA_CODEC_CONFIG_PARAM_SAMPLE_RATE: Sampling rate. 

5. XA_CODEC_CONFIG_PARAM_PCM_WIDTH: PCM width. 

6. Build the audio component using the Xtensa tools to create a library targeted at the 
appropriate HiFi core. 

5.2 Component Integration 

The steps given below need to be followed to integrate the component in XAF. For each step, 

the corresponding step for the MP3 decoder library is also provided as an example, marked by 

MP3_DEC_EG.  

Integration Step 1: Add component files  

Three files have to be added to the XAF library to enable support for a new component. 

Header file containing the library API definition. 

Library file implementing the library. 

Wrapper file that “glues” the library to the XAF. 

  



Xtensa Audio Framework (Hostless) Programmer's GuideGuide  

35  CADENCE DESIGN SYSTEMS, INC. / CONFIDENTIAL  

The detailed steps are as follows: 

On Host Framework: 

1. Copy the API header file for the audio component to the host-apf/include/audio 

folder. This header file must contain the library entry point declaration and all associated 
structures and constants. 

MP3_DEC_EG: host-apf/include/audio/xa_mp3_dec_api.h 

 

      On DSP Framework: 

2.  Create a separate folder under /hifi-dpf/plugins/ for the new component.  

MP3_DEC_EG: /hifi-dpf/plugins/cadence/mp3_dec 

3. Copy the component library for the appropriate core(s) to that folder  

MP3_DEC_EG: /hifi-dpf/plugins/cadence/mp3_dec/lib/xa_mp3_dec.a 

4. Create a wrapper file for the new component in the /hifi-dpf/plugins/ folder. The 

wrapper file connects the component library to XAF. 

MP3_DEC_EG: /hifi-dpf/plugins/cadence/mp3_dec/xa-mp3-decoder.c 

Integration Step 2: Update the DSP Framework to include the 

component 

The DSP Framework must be updated to include references to the new component. The detailed 

steps are as follows: 

5. In the /hifi-dpf/app/xa-factory.c file, add the audio component entry point API 

function extern declaration. 

MP3_DEC_EG: The line below in xa_factory.c 

extern XA_ERRORCODE xa_mp3_decoder(xa_codec_handle_t, WORD32, 

WORD32, pVOID); 

6. In the constant definition of xf_component_id (in xa_factory.c), add the 

registration information for the new audio component.  

MP3_DEC_EG: The line below in xa_factory.c 

{"audio-decoder/mp3", xa_audio_codec_factory, xa_mp3_decoder}, 

The required fields are: 

a. class_id (string identifier): This defines the class name and the component 

name. The different class names are defined in the comp_id array. 

MP3_DEC_EG: "audio-decoder/mp3" 

b. class_constructor  - predefined by XAF and can be either of: 

 xa_audio_codec_factory (for components with a single input buffer and 

a single output buffer), or 

 xa_mixer_factory (for components with multiple input buffers and a single 

output buffer), 

MP3_DEC_EG: xa_audio_codec_factory 



 Xtensa Audio Framework (Hostless) Programmer's Guide 

  CADENCE DESIGN SYSTEMS, INC. / CONFIDENTIAL 36 

c. The function name for the audio component entry point, as defined in the wrapper 
file which connects the component library to XAF. 

MP3_DEC_EG: xa_mp3_decoder 

Integration Step 3: Create the application to use the component  

7. Update makefile in DSP Framework to include new component source files and library. 

8. Update application in Host Framework to include and use new component in the audio 

processing chain.  



Xtensa Audio Framework (Hostless) Programmer's GuideGuide  

37  CADENCE DESIGN SYSTEMS, INC. / CONFIDENTIAL  

5.3 Component Integration – Example 

One example component is provided that can be used as starting point for the development of 

new components. This is described in Table 5-1. The table does not include the mixer and PCM 

Gain component which are considered to be part of XAF. The component folder is under 

/hifi-dpf/plugins/cadence and the application is in /host-apf/utest folder. 

Table 5-1  Example components 

Component 
Name 

API Description References 

Cadence Ogg 
Vorbis decoder 

Audio Decodes 
Ogg Vorbis 
data 

Folder: vorbis_dec 

Application: xaf-dec-test.c 

 



 Xtensa Audio Framework (Hostless) Programmer's Guide 

  CADENCE DESIGN SYSTEMS, INC. / CONFIDENTIAL 38 

6. Known Issues 

1. The XAF has only been tested with Version 7.0.5 of the Xtensa tool chain. 

2. Fatal errors from XAF component (e.g. Ogg Vorbis Decoder) are ignored and may 
cause XAF Host application to hang. This issue will be addressed in next XAF release. 

 

 

 



Xtensa Audio Framework (Hostless) Programmer's GuideGuide  

39  CADENCE DESIGN SYSTEMS, INC. / CONFIDENTIAL  

7. Appendix: Memory Guidelines 

XAF manages the allocation of memory for all created components. Most of the memory is 

allocated for XAF audio component buffer on DSP (used for audio components allocations) and 

XAF shared memory buffer (used for IPC between AP and DSP).  This section provides 

guidelines to the application developer to compute these memory sizes. 

Notation: Consider a chain of N components, where the nth component has An input ports and 

Bn output ports and requires Pn, Sn, In, and On KB for persistent, scratch, input, and output buffers 

respectively. Assume that the nth component is created (xaf_comp_create) with Xn input 

buffers and Yn output buffers. Note that Xn would be zero except for the components that need 

to receive data from the application and Yn would be zero except for the components that need 

to send data to application. Furthermore, assume that the nth component is connected 

(xaf_comp_connect) to another component with Zn buffers (to be counted only if the nth 

component is not the last component in the chain sending data to application). 

Guideline for XAF audio component buffer size on DSP:  

All memory required by the components is allocated by DSP from this local buffer pool – this 
includes persistent, scratch, input, and output buffers required by the component. The 
persistent, scratch, input, and output buffer sizes for a component are typically mentioned in the 
programmer’s guide for that particular component.  

Then the total memory required by all components in the chain would be given by the 

formula: 

𝑇 =  𝑇1 + 𝑇2 , 𝑇1 =  ∑(𝑃𝑛 + 𝐴𝑛

𝑁

𝑛=1

𝐼𝑛 + 𝐵𝑛𝑂𝑛𝑍𝑛), 𝑇2 =  max
𝑛

𝑆𝑛 

T1 is the sum of the persistent, input and output sizes required by the components. T2 

is the maximum scratch memory required by the components, as the scratch memory 

is shared across components. In this version of XAF, T2 is fixed at 56 KB, via the compile 

time constant XF_CFG_CODEC_SCRATCHMEM_SIZE. Furthermore, some memory is 

required by XAF itself. The size of the memory required by XAF is (N + 16) KB, where 

N is the number of components. 

Thus, the XAF audio component buffer size on DSP should be set to a value 

greater than (T1 + 56 + N + 16) KB. 

Guideline for XAF shared memory buffer size between AP and DSP: 

All buffers exchanged between audio components on DSP and the AP application are allocated 

from this buffer. The number of buffers exchanged are defined in the xaf_comp_create call 

for each component. 

Then the total memory required by all components in the chain would be given by the 

formula: 



 Xtensa Audio Framework (Hostless) Programmer's Guide 

  CADENCE DESIGN SYSTEMS, INC. / CONFIDENTIAL 40 

𝑆 =  ∑(8𝐴𝑛

𝑁

𝑛=1

𝑋𝑛 + 𝑂𝑛𝐵𝑛𝑌𝑛),   

In this version of XAF, the inter-component input buffer size is fixed at 8 KB, via the 

compile time constant XAF_INBUF_SIZE. Furthermore, some memory is also required 

by XAF itself. The size of the memory required by XAF is 16 KB, independent of the 

number of components. 

Thus, the XAF shared memory buffer between AP and DSP should be set to a 

value greater than (S + 16) KB. 



Xtensa Audio Framework (Hostless) Programmer's GuideGuide  

41  CADENCE DESIGN SYSTEMS, INC. / CONFIDENTIAL  

8. References 

[1] HiKey960 HiFi3 Android SDK Guide, Ver 0.6. This document is provided as part of 
the XAF package 

 

[2] HiFi Audio Codec Application Programming Interface (API) Definition, Ver 1.0. This 
document is provided as part of the XAF package. 

 

[3] HiFi Speech Codec Application Programming Interface (API) Definition, Ver 1.0. This 
document is provided as part of the XAF package. 

 

  

  

  

  

  

  

  

 

 


