/* * Copyright 2012 Daniel Drown * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * clatd.c - tun interface setup and main event loop */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // For MARK_UNSET. #include // For AID_CLAT. #include "clatd.h" #include "config.h" #include "dump.h" #include "getaddr.h" #include "logging.h" #include "ring.h" #include "setif.h" #include "translate.h" struct clat_config Global_Clatd_Config; /* 40 bytes IPv6 header - 20 bytes IPv4 header + 8 bytes fragment header */ #define MTU_DELTA 28 volatile sig_atomic_t running = 1; /* function: configure_packet_socket * Binds the packet socket and attaches the receive filter to it. * sock - the socket to configure */ int configure_packet_socket(int sock) { uint32_t *ipv6 = Global_Clatd_Config.ipv6_local_subnet.s6_addr32; // clang-format off struct sock_filter filter_code[] = { // Load the first four bytes of the IPv6 destination address (starts 24 bytes in). // Compare it against the first four bytes of our IPv6 address, in host byte order (BPF loads // are always in host byte order). If it matches, continue with next instruction (JMP 0). If it // doesn't match, jump ahead to statement that returns 0 (ignore packet). Repeat for the other // three words of the IPv6 address, and if they all match, return PACKETLEN (accept packet). BPF_STMT(BPF_LD | BPF_W | BPF_ABS, 24), BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, htonl(ipv6[0]), 0, 7), BPF_STMT(BPF_LD | BPF_W | BPF_ABS, 28), BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, htonl(ipv6[1]), 0, 5), BPF_STMT(BPF_LD | BPF_W | BPF_ABS, 32), BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, htonl(ipv6[2]), 0, 3), BPF_STMT(BPF_LD | BPF_W | BPF_ABS, 36), BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, htonl(ipv6[3]), 0, 1), BPF_STMT(BPF_RET | BPF_K, PACKETLEN), BPF_STMT(BPF_RET | BPF_K, 0), }; // clang-format on struct sock_fprog filter = { sizeof(filter_code) / sizeof(filter_code[0]), filter_code }; if (setsockopt(sock, SOL_SOCKET, SO_ATTACH_FILTER, &filter, sizeof(filter))) { logmsg(ANDROID_LOG_FATAL, "attach packet filter failed: %s", strerror(errno)); return 0; } struct sockaddr_ll sll = { .sll_family = AF_PACKET, .sll_protocol = htons(ETH_P_IPV6), .sll_ifindex = if_nametoindex(Global_Clatd_Config.native_ipv6_interface), .sll_pkttype = PACKET_OTHERHOST, // The 464xlat IPv6 address is not assigned to the kernel. }; if (bind(sock, (struct sockaddr *)&sll, sizeof(sll))) { logmsg(ANDROID_LOG_FATAL, "binding packet socket: %s", strerror(errno)); return 0; } return 1; } /* function: configure_tun_ip * configures the ipv4 and ipv6 addresses on the tunnel interface * tunnel - tun device data * mtu - mtu of tun device */ void configure_tun_ip(const struct tun_data *tunnel, const char *v4_addr, int mtu) { if (!v4_addr || !inet_pton(AF_INET, v4_addr, &Global_Clatd_Config.ipv4_local_subnet.s_addr)) { logmsg(ANDROID_LOG_FATAL, "Invalid IPv4 address %s", v4_addr); exit(1); } char addrstr[INET_ADDRSTRLEN]; inet_ntop(AF_INET, &Global_Clatd_Config.ipv4_local_subnet, addrstr, sizeof(addrstr)); logmsg(ANDROID_LOG_INFO, "Using IPv4 address %s on %s", addrstr, tunnel->device4); // Configure the interface before bringing it up. As soon as we bring the interface up, the // framework will be notified and will assume the interface's configuration has been finalized. int status = add_address(tunnel->device4, AF_INET, &Global_Clatd_Config.ipv4_local_subnet, 32, &Global_Clatd_Config.ipv4_local_subnet); if (status < 0) { logmsg(ANDROID_LOG_FATAL, "configure_tun_ip/if_address(4) failed: %s", strerror(-status)); exit(1); } status = if_up(tunnel->device4, mtu); if (status < 0) { logmsg(ANDROID_LOG_FATAL, "configure_tun_ip/if_up(4) failed: %s", strerror(-status)); exit(1); } } /* function: set_capability * set the permitted, effective and inheritable capabilities of the current * thread */ void set_capability(uint64_t target_cap) { struct __user_cap_header_struct header = { .version = _LINUX_CAPABILITY_VERSION_3, .pid = 0 // 0 = change myself }; struct __user_cap_data_struct cap[_LINUX_CAPABILITY_U32S_3] = {}; cap[0].permitted = cap[0].effective = cap[0].inheritable = target_cap; cap[1].permitted = cap[1].effective = cap[1].inheritable = target_cap >> 32; if (capset(&header, cap) < 0) { logmsg(ANDROID_LOG_FATAL, "capset failed: %s", strerror(errno)); exit(1); } } /* function: drop_root_but_keep_caps * drops root privs but keeps the needed capabilities */ void drop_root_but_keep_caps() { gid_t groups[] = { AID_INET, AID_VPN }; if (setgroups(sizeof(groups) / sizeof(groups[0]), groups) < 0) { logmsg(ANDROID_LOG_FATAL, "setgroups failed: %s", strerror(errno)); exit(1); } prctl(PR_SET_KEEPCAPS, 1); if (setresgid(AID_CLAT, AID_CLAT, AID_CLAT) < 0) { logmsg(ANDROID_LOG_FATAL, "setresgid failed: %s", strerror(errno)); exit(1); } if (setresuid(AID_CLAT, AID_CLAT, AID_CLAT) < 0) { logmsg(ANDROID_LOG_FATAL, "setresuid failed: %s", strerror(errno)); exit(1); } // keep CAP_NET_RAW capability to open raw socket, and CAP_IPC_LOCK for mmap // to lock memory. set_capability((1 << CAP_NET_ADMIN) | (1 << CAP_NET_RAW) | (1 << CAP_IPC_LOCK)); } /* function: open_sockets * opens a packet socket to receive IPv6 packets and a raw socket to send them * tunnel - tun device data * mark - the socket mark to use for the sending raw socket */ void open_sockets(struct tun_data *tunnel, uint32_t mark) { int rawsock = socket(AF_INET6, SOCK_RAW | SOCK_NONBLOCK | SOCK_CLOEXEC, IPPROTO_RAW); if (rawsock < 0) { logmsg(ANDROID_LOG_FATAL, "raw socket failed: %s", strerror(errno)); exit(1); } if (mark != MARK_UNSET && setsockopt(rawsock, SOL_SOCKET, SO_MARK, &mark, sizeof(mark)) < 0) { logmsg(ANDROID_LOG_ERROR, "could not set mark on raw socket: %s", strerror(errno)); } tunnel->write_fd6 = rawsock; tunnel->read_fd6 = ring_create(tunnel); if (tunnel->read_fd6 < 0) { exit(1); } } int ipv6_address_changed(const char *interface) { union anyip *interface_ip; interface_ip = getinterface_ip(interface, AF_INET6); if (!interface_ip) { logmsg(ANDROID_LOG_ERROR, "Unable to find an IPv6 address on interface %s", interface); return 1; } if (!ipv6_prefix_equal(&interface_ip->ip6, &Global_Clatd_Config.ipv6_local_subnet)) { char oldstr[INET6_ADDRSTRLEN]; char newstr[INET6_ADDRSTRLEN]; inet_ntop(AF_INET6, &Global_Clatd_Config.ipv6_local_subnet, oldstr, sizeof(oldstr)); inet_ntop(AF_INET6, &interface_ip->ip6, newstr, sizeof(newstr)); logmsg(ANDROID_LOG_INFO, "IPv6 prefix on %s changed: %s -> %s", interface, oldstr, newstr); free(interface_ip); return 1; } else { free(interface_ip); return 0; } } /* function: configure_clat_ipv6_address * picks the clat IPv6 address and configures packet translation to use it. * tunnel - tun device data * interface - uplink interface name * returns: 1 on success, 0 on failure */ int configure_clat_ipv6_address(const struct tun_data *tunnel, const char *interface, const char *v6_addr) { if (!v6_addr || !inet_pton(AF_INET6, v6_addr, &Global_Clatd_Config.ipv6_local_subnet)) { logmsg(ANDROID_LOG_FATAL, "Invalid source address %s", v6_addr); return 0; } char addrstr[INET6_ADDRSTRLEN]; inet_ntop(AF_INET6, &Global_Clatd_Config.ipv6_local_subnet, addrstr, sizeof(addrstr)); logmsg(ANDROID_LOG_INFO, "Using IPv6 address %s on %s", addrstr, interface); // Start translating packets to the new prefix. add_anycast_address(tunnel->write_fd6, &Global_Clatd_Config.ipv6_local_subnet, interface); // Update our packet socket filter to reflect the new 464xlat IP address. if (!configure_packet_socket(tunnel->read_fd6)) { // Things aren't going to work. Bail out and hope we have better luck next time. // We don't log an error here because configure_packet_socket has already done so. return 0; } return 1; } int detect_mtu(const struct in6_addr *plat_subnet, uint32_t plat_suffix, uint32_t mark) { // Create an IPv6 UDP socket. int s = socket(AF_INET6, SOCK_DGRAM | SOCK_CLOEXEC, 0); if (s < 0) { logmsg(ANDROID_LOG_FATAL, "socket(AF_INET6, SOCK_DGRAM, 0) failed"); exit(1); } // Socket's mark affects routing decisions (network selection) if ((mark != MARK_UNSET) && setsockopt(s, SOL_SOCKET, SO_MARK, &mark, sizeof(mark))) { logmsg(ANDROID_LOG_FATAL, "setsockopt(SOL_SOCKET, SO_MARK) failed: %s", strerror(errno)); exit(1); } // Try to connect udp socket to plat_subnet(96 bits):plat_suffix(32 bits) struct sockaddr_in6 dst = { .sin6_family = AF_INET6, .sin6_addr = *plat_subnet, }; dst.sin6_addr.s6_addr32[3] = plat_suffix; if (connect(s, (struct sockaddr *)&dst, sizeof(dst))) { logmsg(ANDROID_LOG_FATAL, "connect() failed: %s", strerror(errno)); exit(1); } // Fetch the socket's IPv6 mtu - this is effectively fetching mtu from routing table int mtu; socklen_t sz_mtu = sizeof(mtu); if (getsockopt(s, SOL_IPV6, IPV6_MTU, &mtu, &sz_mtu)) { logmsg(ANDROID_LOG_FATAL, "getsockopt(SOL_IPV6, IPV6_MTU) failed: %s", strerror(errno)); exit(1); } if (sz_mtu != sizeof(mtu)) { logmsg(ANDROID_LOG_FATAL, "getsockopt(SOL_IPV6, IPV6_MTU) returned unexpected size: %d", sz_mtu); exit(1); } close(s); return mtu; } /* function: configure_interface * reads the configuration and applies it to the interface * uplink_interface - network interface to use to reach the ipv6 internet * plat_prefix - PLAT prefix to use * v4_addr - the v4 address to use on the tunnel interface * v6_addr - the v6 address to use on the native interface * tunnel - tun device data * mark - the socket mark to use for the sending raw socket */ void configure_interface(const char *uplink_interface, const char *plat_prefix, const char *v4_addr, const char *v6_addr, struct tun_data *tunnel, uint32_t mark) { Global_Clatd_Config.native_ipv6_interface = uplink_interface; if (!plat_prefix || inet_pton(AF_INET6, plat_prefix, &Global_Clatd_Config.plat_subnet) <= 0) { logmsg(ANDROID_LOG_FATAL, "invalid IPv6 address specified for plat prefix: %s", plat_prefix); exit(1); } int mtu = detect_mtu(&Global_Clatd_Config.plat_subnet, htonl(0x08080808), mark); // clamp to minimum ipv6 mtu - this probably cannot ever trigger if (mtu < 1280) mtu = 1280; // clamp to buffer size if (mtu > MAXMTU) mtu = MAXMTU; // decrease by ipv6(40) + ipv6 fragmentation header(8) vs ipv4(20) overhead of 28 bytes mtu -= MTU_DELTA; logmsg(ANDROID_LOG_WARN, "ipv4 mtu is %d", mtu); configure_tun_ip(tunnel, v4_addr, mtu); if (!configure_clat_ipv6_address(tunnel, uplink_interface, v6_addr)) { exit(1); } } /* function: read_packet * reads a packet from the tunnel fd and translates it * read_fd - file descriptor to read original packet from * write_fd - file descriptor to write translated packet to * to_ipv6 - whether the packet is to be translated to ipv6 or ipv4 */ void read_packet(int read_fd, int write_fd, int to_ipv6) { ssize_t readlen; uint8_t buf[PACKETLEN], *packet; readlen = read(read_fd, buf, PACKETLEN); if (readlen < 0) { if (errno != EAGAIN) { logmsg(ANDROID_LOG_WARN, "read_packet/read error: %s", strerror(errno)); } return; } else if (readlen == 0) { logmsg(ANDROID_LOG_WARN, "read_packet/tun interface removed"); running = 0; return; } struct tun_pi *tun_header = (struct tun_pi *)buf; if (readlen < (ssize_t)sizeof(*tun_header)) { logmsg(ANDROID_LOG_WARN, "read_packet/short read: got %ld bytes", readlen); return; } uint16_t proto = ntohs(tun_header->proto); if (proto != ETH_P_IP) { logmsg(ANDROID_LOG_WARN, "%s: unknown packet type = 0x%x", __func__, proto); return; } if (tun_header->flags != 0) { logmsg(ANDROID_LOG_WARN, "%s: unexpected flags = %d", __func__, tun_header->flags); } packet = (uint8_t *)(tun_header + 1); readlen -= sizeof(*tun_header); translate_packet(write_fd, to_ipv6, packet, readlen); } /* function: event_loop * reads packets from the tun network interface and passes them down the stack * tunnel - tun device data */ void event_loop(struct tun_data *tunnel) { time_t last_interface_poll; struct pollfd wait_fd[] = { { tunnel->read_fd6, POLLIN, 0 }, { tunnel->fd4, POLLIN, 0 }, }; // start the poll timer last_interface_poll = time(NULL); while (running) { if (poll(wait_fd, ARRAY_SIZE(wait_fd), NO_TRAFFIC_INTERFACE_POLL_FREQUENCY * 1000) == -1) { if (errno != EINTR) { logmsg(ANDROID_LOG_WARN, "event_loop/poll returned an error: %s", strerror(errno)); } } else { if (wait_fd[0].revents & POLLIN) { ring_read(&tunnel->ring, tunnel->fd4, 0 /* to_ipv6 */); } // If any other bit is set, assume it's due to an error (i.e. POLLERR). if (wait_fd[0].revents & ~POLLIN) { // ring_read doesn't clear the error indication on the socket. recv(tunnel->read_fd6, NULL, 0, MSG_PEEK); logmsg(ANDROID_LOG_WARN, "event_loop: clearing error on read_fd6: %s", strerror(errno)); } // Call read_packet if the socket has data to be read, but also if an // error is waiting. If we don't call read() after getting POLLERR, a // subsequent poll() will return immediately with POLLERR again, // causing this code to spin in a loop. Calling read() will clear the // socket error flag instead. if (wait_fd[1].revents) { read_packet(tunnel->fd4, tunnel->write_fd6, 1 /* to_ipv6 */); } } time_t now = time(NULL); if (now >= (last_interface_poll + INTERFACE_POLL_FREQUENCY)) { last_interface_poll = now; if (ipv6_address_changed(Global_Clatd_Config.native_ipv6_interface)) { break; } } } }