/* * Copyright (C) 2018 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "Operations" #include "OperationResolver.h" #include "OperationsUtils.h" #include "Tracing.h" namespace android { namespace nn { namespace gather { constexpr char kOperationName[] = "GATHER"; constexpr uint32_t kNumInputs = 3; constexpr uint32_t kInputTensor = 0; constexpr uint32_t kInputAxis = 1; constexpr uint32_t kInputIndices = 2; constexpr uint32_t kNumOutputs = 1; constexpr uint32_t kOutputTensor = 0; namespace { template inline bool eval(const T* inputData, const Shape& inputShape, int32_t axis, const int32_t* indicesData, const Shape& indicesShape, T* outputData) { const auto outerSize = getNumberOfElements(inputShape, 0, axis); const auto axisSize = getSizeOfDimension(inputShape, axis); const auto innerSize = getNumberOfElements(inputShape, axis + 1, getNumberOfDimensions(inputShape)); const auto indicesCount = getNumberOfElements(indicesShape); for (uint32_t outer = 0; outer < outerSize; ++outer) { for (uint32_t outputIndex = 0; outputIndex < indicesCount; ++outputIndex) { const auto inputIndex = static_cast(indicesData[outputIndex]); NN_RET_CHECK_LE(0u, inputIndex); NN_RET_CHECK_LT(inputIndex, axisSize); std::memcpy(outputData + (outer * indicesCount + outputIndex) * innerSize, inputData + (outer * axisSize + inputIndex) * innerSize, sizeof(T) * innerSize); } } return true; } } // namespace Result validate(const IOperationValidationContext* context) { NN_RET_CHECK_EQ(context->getNumInputs(), kNumInputs); NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs); OperandType inputType = context->getInputType(kInputTensor); NN_RET_CHECK(inputType == OperandType::TENSOR_FLOAT16 || inputType == OperandType::TENSOR_FLOAT32 || inputType == OperandType::TENSOR_INT32 || inputType == OperandType::TENSOR_QUANT8_ASYMM || inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) << "Unsupported tensor type for operation " << kOperationName; NN_RET_CHECK(validateInputTypes(context, {inputType, OperandType::INT32, OperandType::TENSOR_INT32})); NN_RET_CHECK(validateOutputTypes(context, {inputType})); if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { return Version::ANDROID_R; } else { return Version::ANDROID_Q; } } bool prepare(IOperationExecutionContext* context) { Shape input = context->getInputShape(kInputTensor); int32_t axis = context->getInputValue(kInputAxis); NN_RET_CHECK(handleNegativeAxis(input, &axis)); Shape indices = context->getInputShape(kInputIndices); Shape output = context->getOutputShape(kOutputTensor); output.dimensions.clear(); output.dimensions.reserve(getNumberOfDimensions(input) + getNumberOfDimensions(indices) - 1); output.dimensions.insert(output.dimensions.end(), input.dimensions.begin(), input.dimensions.begin() + axis); output.dimensions.insert(output.dimensions.end(), indices.dimensions.begin(), indices.dimensions.end()); output.dimensions.insert(output.dimensions.end(), input.dimensions.begin() + axis + 1, input.dimensions.end()); return context->setOutputShape(kOutputTensor, output); } bool execute(IOperationExecutionContext* context) { int32_t axis = context->getInputValue(kInputAxis); NN_RET_CHECK(handleNegativeAxis(context->getInputShape(kInputTensor), &axis)); switch (context->getInputType(kInputTensor)) { case OperandType::TENSOR_FLOAT16: return eval(context->getInputBuffer<_Float16>(kInputTensor), context->getInputShape(kInputTensor), axis, context->getInputBuffer(kInputIndices), context->getInputShape(kInputIndices), context->getOutputBuffer<_Float16>(kOutputTensor)); case OperandType::TENSOR_FLOAT32: return eval(context->getInputBuffer(kInputTensor), context->getInputShape(kInputTensor), axis, context->getInputBuffer(kInputIndices), context->getInputShape(kInputIndices), context->getOutputBuffer(kOutputTensor)); case OperandType::TENSOR_INT32: return eval(context->getInputBuffer(kInputTensor), context->getInputShape(kInputTensor), axis, context->getInputBuffer(kInputIndices), context->getInputShape(kInputIndices), context->getOutputBuffer(kOutputTensor)); case OperandType::TENSOR_QUANT8_ASYMM: return eval(context->getInputBuffer(kInputTensor), context->getInputShape(kInputTensor), axis, context->getInputBuffer(kInputIndices), context->getInputShape(kInputIndices), context->getOutputBuffer(kOutputTensor)); case OperandType::TENSOR_QUANT8_ASYMM_SIGNED: return eval(context->getInputBuffer(kInputTensor), context->getInputShape(kInputTensor), axis, context->getInputBuffer(kInputIndices), context->getInputShape(kInputIndices), context->getOutputBuffer(kOutputTensor)); default: NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName; } } } // namespace gather NN_REGISTER_OPERATION(GATHER, gather::kOperationName, gather::validate, gather::prepare, gather::execute); } // namespace nn } // namespace android