/* * Copyright (C) 2019 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "Operations" #include #include #include "OperationResolver.h" #include "Tracing.h" #ifdef NN_INCLUDE_CPU_IMPLEMENTATION #include #include #include "CpuOperationUtils.h" #endif // NN_INCLUDE_CPU_IMPLEMENTATION namespace android { namespace nn { namespace l2_norm { constexpr char kOperationName[] = "L2_NORMALIZATION"; constexpr uint32_t kNumInputs = 2; constexpr uint32_t kInputTensor = 0; constexpr uint32_t kAxisScalar = 1; constexpr uint32_t kNumOutputs = 1; constexpr uint32_t kOutputTensor = 0; #ifdef NN_INCLUDE_CPU_IMPLEMENTATION namespace { inline bool l2normFloat32Impl(const float* inputData, const Shape& inputShape, int32_t axis, float* outputData, const Shape& outputShape) { NNTRACE_TRANS("l2normFloat32"); constexpr float kEpsilon = 1e-6f; const uint32_t outerSize = getNumberOfElements(inputShape, 0, axis); const uint32_t axisSize = getSizeOfDimension(inputShape, axis); const uint32_t innerSize = getNumberOfElements(inputShape, axis + 1, getNumberOfDimensions(inputShape)); for (uint32_t outer = 0; outer < outerSize; ++outer) { const float* inputBeg = inputData + outer * axisSize * innerSize; const float* inputEnd = inputBeg + axisSize * innerSize; float* outputBeg = outputData + outer * axisSize * innerSize; for (uint32_t inner = 0; inner < innerSize; ++inner, ++inputBeg, ++inputEnd, ++outputBeg) { float sum = 0.0f; for (const float* p = inputBeg; p < inputEnd; p += innerSize) { float val = *p; sum += val * val; } float l2_norm = std::max(std::sqrt(sum), kEpsilon); float* pOut = outputBeg; for (const float* p = inputBeg; p < inputEnd; p += innerSize, pOut += innerSize) { *pOut = *p / l2_norm; } } } return true; } inline bool l2normQuant8Impl(const uint8_t* inputData, const Shape& inputShape, int32_t axis, uint8_t* outputData, const Shape& outputShape) { NNTRACE_TRANS("l2normQuant8"); const uint32_t outerSize = getNumberOfElements(inputShape, 0, axis); const uint32_t axisSize = getSizeOfDimension(inputShape, axis); const uint32_t innerSize = getNumberOfElements(inputShape, axis + 1, getNumberOfDimensions(inputShape)); for (uint32_t outer = 0; outer < outerSize; ++outer) { const uint8_t* inputBeg = inputData + outer * axisSize * innerSize; const uint8_t* inputEnd = inputBeg + axisSize * innerSize; uint8_t* outputBeg = outputData + outer * axisSize * innerSize; for (uint32_t inner = 0; inner < innerSize; ++inner, ++inputBeg, ++inputEnd, ++outputBeg) { int32_t sum = 0; for (const uint8_t* p = inputBeg; p < inputEnd; p += innerSize) { int32_t val = static_cast(*p) - inputShape.offset; sum += val * val; } int32_t invMultiplier, invShift; tflite::GetInvSqrtQuantizedMultiplierExp(sum, -1, &invMultiplier, &invShift); uint8_t* pOut = outputBeg; for (const uint8_t* p = inputBeg; p < inputEnd; p += innerSize, pOut += innerSize) { int32_t val = static_cast(*p) - inputShape.offset; int32_t scaledVal = tflite::MultiplyByQuantizedMultiplierSmallerThanOneExp( val * 128, invMultiplier, invShift) + 128; *pOut = static_cast(std::min(std::max(scaledVal, 0), 255)); } } } return true; } inline bool l2normQuant8SignedImpl(const int8_t* inputData, const Shape& inputShape, int32_t axis, int8_t* outputData, const Shape& outputShape) { NNTRACE_TRANS("l2normQuant8Signed"); const uint32_t outerSize = getNumberOfElements(inputShape, 0, axis); const uint32_t axisSize = getSizeOfDimension(inputShape, axis); const uint32_t innerSize = getNumberOfElements(inputShape, axis + 1, getNumberOfDimensions(inputShape)); for (uint32_t outer = 0; outer < outerSize; ++outer) { const int8_t* inputBeg = inputData + outer * axisSize * innerSize; const int8_t* inputEnd = inputBeg + axisSize * innerSize; int8_t* outputBeg = outputData + outer * axisSize * innerSize; for (uint32_t inner = 0; inner < innerSize; ++inner, ++inputBeg, ++inputEnd, ++outputBeg) { int32_t sum = 0; for (const int8_t* p = inputBeg; p < inputEnd; p += innerSize) { int32_t val = static_cast(*p) - inputShape.offset; sum += val * val; } int32_t invMultiplier, invShift; tflite::GetInvSqrtQuantizedMultiplierExp(sum, -1, &invMultiplier, &invShift); int8_t* pOut = outputBeg; for (const int8_t* p = inputBeg; p < inputEnd; p += innerSize, pOut += innerSize) { int32_t val = static_cast(*p) - inputShape.offset; int32_t scaledVal = tflite::MultiplyByQuantizedMultiplierSmallerThanOneExp( val * 128, invMultiplier, invShift); *pOut = static_cast(std::min(std::max(scaledVal, -128), 127)); } } } return true; } bool l2normFloat32(const float* inputData, const Shape& inputShape, int32_t axis, float* outputData, const Shape& outputShape) { int32_t ndim = getNumberOfDimensions(inputShape); NN_CHECK(handleNegativeAxis(inputShape, &axis)); // TFLite optimized implementation only supports computation along the last axis if (axis == ndim - 1) { NNTRACE_COMP("optimized_ops::L2Normalization::float"); tflite::L2NormalizationParams param = {.input_zero_point = 0}; tflite::optimized_ops::L2Normalization(param, convertShapeToTflshape(inputShape), inputData, convertShapeToTflshape(outputShape), outputData); return true; } else { return l2normFloat32Impl(inputData, inputShape, axis, outputData, outputShape); } } bool l2normFloat16(const _Float16* inputData, const Shape& inputShape, int32_t axis, _Float16* outputData, const Shape& outputShape) { NNTRACE_TRANS("l2normFloat16"); std::vector inputDataFloat32(getNumberOfElements(inputShape)); convertFloat16ToFloat32(inputData, &inputDataFloat32); std::vector outputDataFloat32(getNumberOfElements(outputShape)); l2normFloat32(inputDataFloat32.data(), inputShape, axis, outputDataFloat32.data(), outputShape); convertFloat32ToFloat16(outputDataFloat32, outputData); return true; } bool l2normQuant8(const uint8_t* inputData, const Shape& inputShape, int32_t axis, uint8_t* outputData, const Shape& outputShape) { int32_t ndim = getNumberOfDimensions(inputShape); NN_CHECK(handleNegativeAxis(inputShape, &axis)); // TFLite optimized implementation only supports computation along the last axis if (axis == ndim - 1) { NNTRACE_COMP("optimized_ops::L2Normalization::uint8"); tflite::L2NormalizationParams param = {.input_zero_point = inputShape.offset}; tflite::optimized_ops::L2Normalization(param, convertShapeToTflshape(inputShape), inputData, convertShapeToTflshape(outputShape), outputData); return true; } else { return l2normQuant8Impl(inputData, inputShape, axis, outputData, outputShape); } } bool l2normQuant8Signed(const int8_t* inputData, const Shape& inputShape, int32_t axis, int8_t* outputData, const Shape& outputShape) { int32_t ndim = getNumberOfDimensions(inputShape); NN_CHECK(handleNegativeAxis(inputShape, &axis)); // TFLite implementation only supports computation along the last axis if (axis == ndim - 1) { NNTRACE_COMP("reference_integer_ops::L2Normalization"); const int32_t outerSize = getNumberOfElements(inputShape, 0, axis); const int32_t axisSize = getSizeOfDimension(inputShape, axis); tflite::reference_integer_ops::L2Normalization(inputShape.offset, outerSize, axisSize, inputData, outputData); return true; } else { return l2normQuant8SignedImpl(inputData, inputShape, axis, outputData, outputShape); } } } // namespace #endif // NN_INCLUDE_CPU_IMPLEMENTATION Result validate(const IOperationValidationContext* context) { NN_RET_CHECK(context->getNumInputs() == kNumInputs || context->getNumInputs() == kNumInputs - 1); NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs); const OperandType inputType = context->getInputType(kInputTensor); std::vector inExpectedTypes = {inputType}; auto minSupportedVersion = Version::ANDROID_OC_MR1; if (inputType == OperandType::TENSOR_FLOAT16 || inputType == OperandType::TENSOR_QUANT8_ASYMM) { minSupportedVersion = Version::ANDROID_Q; } else if (inputType == OperandType::TENSOR_FLOAT32) { minSupportedVersion = Version::ANDROID_OC_MR1; } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { minSupportedVersion = Version::ANDROID_R; } else { NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName; } if (context->getNumInputs() == kNumInputs) { inExpectedTypes.push_back(OperandType::INT32); minSupportedVersion = Version::ANDROID_Q; } else if (context->getInputShape(kInputTensor).dimensions.size() != 4) { minSupportedVersion = Version::ANDROID_Q; } const Shape& input = context->getInputShape(kInputTensor); if (hasKnownRank(input)) { NN_RET_CHECK_LE(getNumberOfDimensions(input), 4); } NN_RET_CHECK(validateInputTypes(context, inExpectedTypes)); NN_RET_CHECK(validateOutputTypes(context, {inputType})); return minSupportedVersion; } #ifdef NN_INCLUDE_CPU_IMPLEMENTATION bool prepare(IOperationExecutionContext* context) { const Shape& input = context->getInputShape(kInputTensor); int32_t numDimensions = getNumberOfDimensions(input); int32_t axis = context->getNumInputs() == kNumInputs ? context->getInputValue(kAxisScalar) : -1; NN_RET_CHECK_LE(numDimensions, 4); NN_RET_CHECK_GE(axis, -numDimensions); NN_RET_CHECK_LT(axis, numDimensions); Shape output = context->getOutputShape(kOutputTensor); output.type = input.type; output.dimensions = input.dimensions; if (output.type == OperandType::TENSOR_QUANT8_ASYMM) { output.scale = 1.0f / 128.0f; output.offset = 128; } else if (output.type == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { output.scale = 1.0f / 128.0f; output.offset = 0; } else { output.scale = 0; output.offset = 0; } return context->setOutputShape(kOutputTensor, output); } bool execute(IOperationExecutionContext* context) { int32_t axis = context->getNumInputs() == kNumInputs ? context->getInputValue(kAxisScalar) : -1; NN_RET_CHECK(handleNegativeAxis(context->getInputShape(kInputTensor), &axis)); switch (context->getInputType(kInputTensor)) { case OperandType::TENSOR_FLOAT32: return l2normFloat32(context->getInputBuffer(kInputTensor), context->getInputShape(kInputTensor), axis, context->getOutputBuffer(kOutputTensor), context->getOutputShape(kOutputTensor)); case OperandType::TENSOR_FLOAT16: return l2normFloat16(context->getInputBuffer<_Float16>(kInputTensor), context->getInputShape(kInputTensor), axis, context->getOutputBuffer<_Float16>(kOutputTensor), context->getOutputShape(kOutputTensor)); case OperandType::TENSOR_QUANT8_ASYMM: return l2normQuant8(context->getInputBuffer(kInputTensor), context->getInputShape(kInputTensor), axis, context->getOutputBuffer(kOutputTensor), context->getOutputShape(kOutputTensor)); case OperandType::TENSOR_QUANT8_ASYMM_SIGNED: return l2normQuant8Signed(context->getInputBuffer(kInputTensor), context->getInputShape(kInputTensor), axis, context->getOutputBuffer(kOutputTensor), context->getOutputShape(kOutputTensor)); default: NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName; } } #endif // NN_INCLUDE_CPU_IMPLEMENTATION } // namespace l2_norm NN_REGISTER_OPERATION(L2_NORMALIZATION, l2_norm::kOperationName, l2_norm::validate, l2_norm::prepare, l2_norm::execute); } // namespace nn } // namespace android