/* * Copyright (C) 2019 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "Operations" #include "LegacyUtils.h" #include "OperationResolver.h" #include "OperationsUtils.h" namespace android { namespace nn { namespace rank_op { constexpr uint32_t kNumInputs = 1; constexpr uint32_t kInputTensor = 0; constexpr uint32_t kNumOutputs = 1; constexpr uint32_t kOutputScalar = 0; Result validate(const IOperationValidationContext* context) { NN_RET_CHECK_EQ(context->getNumInputs(), kNumInputs); NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs); OperandType inputType = context->getInputType(kInputTensor); NN_RET_CHECK(inputType == OperandType::TENSOR_FLOAT16 || inputType == OperandType::TENSOR_FLOAT32 || inputType == OperandType::TENSOR_INT32 || inputType == OperandType::TENSOR_QUANT8_ASYMM || inputType == OperandType::TENSOR_QUANT16_SYMM || inputType == OperandType::TENSOR_BOOL8 || inputType == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL || inputType == OperandType::TENSOR_QUANT16_ASYMM || inputType == OperandType::TENSOR_QUANT8_SYMM || inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) << "Incorrect input type for a RANK op: " << inputType; NN_RET_CHECK(validateOutputTypes(context, {OperandType::INT32})); return Version::ANDROID_R; } bool prepare(IOperationExecutionContext* context) { Shape output = context->getOutputShape(kOutputScalar); return context->setOutputShape(kOutputScalar, output); } bool execute(IOperationExecutionContext* context) { *context->getOutputBuffer(kOutputScalar) = getNumberOfDimensions(context->getInputShape(kInputTensor)); return true; } } // namespace rank_op NN_REGISTER_OPERATION(RANK, "RANK", rank_op::validate, rank_op::prepare, rank_op::execute); } // namespace nn } // namespace android