/* * Copyright (C) 2018 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "Operations" #include #include #include #include "OperationResolver.h" #include "OperationsUtils.h" namespace android { namespace nn { namespace topk_v2 { constexpr uint32_t kNumInputs = 2; constexpr uint32_t kInputTensor = 0; constexpr uint32_t kTopKScalar = 1; constexpr uint32_t kNumOutputs = 2; constexpr uint32_t kOutputValuesTensor = 0; constexpr uint32_t kOutputIndicesTensor = 1; namespace { template bool evalGeneric(const T* inputData, const Shape& inputShape, const int32_t k, T* valuesData, int32_t* indicesData) { const int rowSize = inputShape.dimensions.back(); const int totalSize = getNumberOfElements(inputShape); std::vector> values(rowSize); T* curOutputValue = valuesData; int32_t* curOutputIndex = indicesData; for (int rowBegin = 0; rowBegin < totalSize; rowBegin += rowSize) { for (int i = 0; i < rowSize; ++i) { values[i] = std::make_pair(inputData[rowBegin + i], i); } std::nth_element(values.begin(), values.begin() + (rowSize - k), values.end()); std::sort(values.begin() + (rowSize - k), values.end()); std::reverse(values.begin(), values.end()); for (int i = 0; i < k; ++i) { *curOutputValue = values[i].first; *curOutputIndex = values[i].second; curOutputValue++; curOutputIndex++; } } return true; } template bool executeTyped(IOperationExecutionContext* context) { return evalGeneric(context->getInputBuffer(kInputTensor), context->getInputShape(kInputTensor), context->getInputValue(kTopKScalar), context->getOutputBuffer(kOutputValuesTensor), context->getOutputBuffer(kOutputIndicesTensor)); } } // namespace Result validate(const IOperationValidationContext* context) { NN_RET_CHECK_EQ(context->getNumInputs(), kNumInputs); NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs); OperandType inputType = context->getInputType(kInputTensor); NN_RET_CHECK(inputType == OperandType::TENSOR_FLOAT16 || inputType == OperandType::TENSOR_FLOAT32 || inputType == OperandType::TENSOR_INT32 || inputType == OperandType::TENSOR_QUANT8_ASYMM || inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) << "Unsupported input operand type for select op: " << inputType; NN_RET_CHECK(validateInputTypes(context, {inputType, OperandType::INT32})); NN_RET_CHECK(validateOutputTypes(context, {inputType, OperandType::TENSOR_INT32})); Version minSupportedVersion = Version::ANDROID_Q; if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { minSupportedVersion = Version::ANDROID_R; } return minSupportedVersion; } bool prepare(IOperationExecutionContext* context) { const Shape inputShape = context->getInputShape(kInputTensor); const int32_t k = context->getInputValue(kTopKScalar); NN_RET_CHECK_GT(k, 0); NN_RET_CHECK_LE(k, inputShape.dimensions.back()); // Copy input shape to ensure that quantization parameters for the output // values are the same as for the input tensor. Shape outputValuesShape = inputShape; outputValuesShape.dimensions.back() = k; Shape outputIndicesShape; outputIndicesShape.type = OperandType::TENSOR_INT32; outputIndicesShape.dimensions = inputShape.dimensions; outputIndicesShape.dimensions.back() = k; return context->setOutputShape(kOutputValuesTensor, outputValuesShape) && context->setOutputShape(kOutputIndicesTensor, outputIndicesShape); } bool execute(IOperationExecutionContext* context) { const Shape inputShape = context->getInputShape(kInputTensor); switch (inputShape.type) { case OperandType::TENSOR_FLOAT16: { return executeTyped<_Float16>(context); } break; case OperandType::TENSOR_FLOAT32: { return executeTyped(context); } break; case OperandType::TENSOR_INT32: { return executeTyped(context); } break; case OperandType::TENSOR_QUANT8_ASYMM: { return executeTyped(context); } break; case OperandType::TENSOR_QUANT8_ASYMM_SIGNED: { return executeTyped(context); } break; default: { LOG(ERROR) << "Unsupported data type: " << inputShape.type; return false; } } } } // namespace topk_v2 NN_REGISTER_OPERATION(TOPK_V2, "TOPK_V2", topk_v2::validate, topk_v2::prepare, topk_v2::execute); } // namespace nn } // namespace android